-- | -- Module : Simulation.Aivika.Internal.Cont -- Copyright : Copyright (c) 2009-2015, David Sorokin -- License : BSD3 -- Maintainer : David Sorokin -- Stability : experimental -- Tested with: GHC 7.10.1 -- -- This is an internal implementation module that should never be used directly. -- -- The 'Cont' monad is a variation of the standard @Cont@ monad -- and F# async workflow, where the result of applying -- the continuations is the 'Event' computation. -- module Simulation.Aivika.Internal.Cont (ContCancellation(..), ContId, ContEvent(..), Cont(..), ContParams, FrozenCont, newContId, contSignal, contCancellationInitiated, contCancellationInitiate, contCancellationInitiating, contCancellationActivated, contCancellationBind, contCancellationConnect, contPreemptionBegun, contPreemptionBegin, contPreemptionBeginning, contPreemptionEnd, contPreemptionEnding, invokeCont, runCont, rerunCont, spawnCont, contParallel, contParallel_, catchCont, finallyCont, throwCont, resumeCont, resumeECont, reenterCont, freezeCont, freezeContReentering, unfreezeCont, substituteCont, contCanceled, contAwait, traceCont) where import Data.IORef import Data.Array import Data.Array.IO.Safe import Data.Monoid import Control.Exception import Control.Monad import Control.Monad.Trans import Control.Applicative import Debug.Trace import Simulation.Aivika.Internal.Specs import Simulation.Aivika.Internal.Parameter import Simulation.Aivika.Internal.Simulation import Simulation.Aivika.Internal.Dynamics import Simulation.Aivika.Internal.Event import Simulation.Aivika.Signal -- | It defines how the parent and child computations should be cancelled. data ContCancellation = CancelTogether -- ^ Cancel the both computations together. | CancelChildAfterParent -- ^ Cancel the child if its parent is cancelled. | CancelParentAfterChild -- ^ Cancel the parent if its child is cancelled. | CancelInIsolation -- ^ Cancel the computations in isolation. -- | It identifies the 'Cont' computation. data ContId = ContId { contCancellationInitiatedRef :: IORef Bool, contCancellationActivatedRef :: IORef Bool, contPreemptionCountRef :: IORef Int, contSignalSource :: SignalSource ContEvent } instance Eq ContId where x == y = contCancellationInitiatedRef x == contCancellationInitiatedRef y -- unique references -- | The event that occurs within the 'Cont' computation. data ContEvent = ContCancellationInitiating -- ^ Cancel the computation. | ContPreemptionBeginning -- ^ Preempt the computation. | ContPreemptionEnding -- ^ Proceed with the computation after if was preempted. deriving (Eq, Ord, Show) -- | Create a computation identifier. newContId :: Simulation ContId newContId = Simulation $ \r -> do r1 <- newIORef False r2 <- newIORef False r3 <- newIORef 0 s <- invokeSimulation r newSignalSource return ContId { contCancellationInitiatedRef = r1, contCancellationActivatedRef = r2, contPreemptionCountRef = r3, contSignalSource = s } -- | Signal when the computation state changes. contSignal :: ContId -> Signal ContEvent contSignal = publishSignal . contSignalSource -- | Signal when the cancellation is intiating. contCancellationInitiating :: ContId -> Signal () contCancellationInitiating = filterSignal_ (ContCancellationInitiating ==) . contSignal -- | Whether the cancellation was initiated. contCancellationInitiated :: ContId -> Event Bool contCancellationInitiated x = Event $ \p -> readIORef (contCancellationInitiatedRef x) -- | Whether the cancellation was activated. contCancellationActivated :: ContId -> IO Bool contCancellationActivated = readIORef . contCancellationActivatedRef -- | Deactivate the cancellation. contCancellationDeactivate :: ContId -> IO () contCancellationDeactivate x = writeIORef (contCancellationActivatedRef x) False -- | If the main computation is cancelled then all the nested ones will be cancelled too. contCancellationBind :: ContId -> [ContId] -> Event DisposableEvent contCancellationBind x ys = Event $ \p -> do hs1 <- forM ys $ \y -> invokeEvent p $ handleSignal (contCancellationInitiating x) $ \_ -> contCancellationInitiate y hs2 <- forM ys $ \y -> invokeEvent p $ handleSignal (contCancellationInitiating y) $ \_ -> contCancellationInitiate x return $ mconcat hs1 <> mconcat hs2 -- | Connect the parent computation to the child one. contCancellationConnect :: ContId -- ^ the parent -> ContCancellation -- ^ how to connect -> ContId -- ^ the child -> Event DisposableEvent -- ^ computation of the disposable handler contCancellationConnect parent cancellation child = Event $ \p -> do let m1 = handleSignal (contCancellationInitiating parent) $ \_ -> contCancellationInitiate child m2 = handleSignal (contCancellationInitiating child) $ \_ -> contCancellationInitiate parent h1 <- case cancellation of CancelTogether -> invokeEvent p m1 CancelChildAfterParent -> invokeEvent p m1 CancelParentAfterChild -> return mempty CancelInIsolation -> return mempty h2 <- case cancellation of CancelTogether -> invokeEvent p m2 CancelChildAfterParent -> return mempty CancelParentAfterChild -> invokeEvent p m2 CancelInIsolation -> return mempty return $ h1 <> h2 -- | Initiate the cancellation. contCancellationInitiate :: ContId -> Event () contCancellationInitiate x = Event $ \p -> do f <- readIORef (contCancellationInitiatedRef x) unless f $ do writeIORef (contCancellationInitiatedRef x) True writeIORef (contCancellationActivatedRef x) True invokeEvent p $ triggerSignal (contSignalSource x) ContCancellationInitiating -- | Preempt the computation. contPreemptionBegin :: ContId -> Event () contPreemptionBegin x = Event $ \p -> do f <- readIORef (contCancellationInitiatedRef x) unless f $ do n <- readIORef (contPreemptionCountRef x) let n' = n + 1 n' `seq` writeIORef (contPreemptionCountRef x) n' when (n == 0) $ invokeEvent p $ triggerSignal (contSignalSource x) ContPreemptionBeginning -- | Proceed with the computation after it was preempted earlier. contPreemptionEnd :: ContId -> Event () contPreemptionEnd x = Event $ \p -> do f <- readIORef (contCancellationInitiatedRef x) unless f $ do n <- readIORef (contPreemptionCountRef x) let n' = n - 1 n' `seq` writeIORef (contPreemptionCountRef x) n' when (n' == 0) $ invokeEvent p $ triggerSignal (contSignalSource x) ContPreemptionEnding -- | Signal when the computation is preempted. contPreemptionBeginning :: ContId -> Signal () contPreemptionBeginning = filterSignal_ (ContPreemptionBeginning ==) . contSignal -- | Signal when the computation is proceeded after it was preempted before. contPreemptionEnding :: ContId -> Signal () contPreemptionEnding = filterSignal_ (ContPreemptionEnding ==) . contSignal -- | Whether the computation was preemtped. contPreemptionBegun :: ContId -> Event Bool contPreemptionBegun x = Event $ \p -> do n <- readIORef (contPreemptionCountRef x) return (n > 0) -- | The 'Cont' type is similar to the standard @Cont@ monad -- and F# async workflow but only the result of applying -- the continuations return the 'Event' computation. newtype Cont a = Cont (ContParams a -> Event ()) -- | The continuation parameters. data ContParams a = ContParams { contCont :: a -> Event (), contAux :: ContParamsAux } -- | The auxiliary continuation parameters. data ContParamsAux = ContParamsAux { contECont :: SomeException -> Event (), contCCont :: () -> Event (), contId :: ContId, contCancelFlag :: IO Bool, contCatchFlag :: Bool } instance Monad Cont where return = returnC m >>= k = bindC m k instance ParameterLift Cont where liftParameter = liftPC instance SimulationLift Cont where liftSimulation = liftSC instance DynamicsLift Cont where liftDynamics = liftDC instance EventLift Cont where liftEvent = liftEC instance Functor Cont where fmap = liftM instance Applicative Cont where pure = return (<*>) = ap instance MonadIO Cont where liftIO = liftIOC -- | Invoke the computation. invokeCont :: ContParams a -> Cont a -> Event () {-# INLINE invokeCont #-} invokeCont p (Cont m) = m p -- | Cancel the computation. cancelCont :: Point -> ContParams a -> IO () {-# NOINLINE cancelCont #-} cancelCont p c = do contCancellationDeactivate (contId $ contAux c) invokeEvent p $ (contCCont $ contAux c) () returnC :: a -> Cont a {-# INLINE returnC #-} returnC a = Cont $ \c -> Event $ \p -> do z <- contCanceled c if z then cancelCont p c else invokeEvent p $ contCont c a bindC :: Cont a -> (a -> Cont b) -> Cont b {-# INLINE bindC #-} bindC (Cont m) k = Cont $ \c -> Event $ \p -> do z <- contCanceled c if z then cancelCont p c else invokeEvent p $ m $ let cont a = invokeCont c (k a) in c { contCont = cont } -- | Like @return a >>= k@. callCont :: (a -> Cont b) -> a -> ContParams b -> Event () callCont k a c = Event $ \p -> do z <- contCanceled c if z then cancelCont p c else invokeEvent p $ invokeCont c (k a) -- | Exception handling within 'Cont' computations. catchCont :: Exception e => Cont a -> (e -> Cont a) -> Cont a catchCont (Cont m) h = Cont $ \c0 -> Event $ \p -> do let c = c0 { contAux = (contAux c0) { contCatchFlag = True } } z <- contCanceled c if z then cancelCont p c else invokeEvent p $ m $ let econt e0 = case fromException e0 of Just e -> callCont h e c Nothing -> (contECont . contAux $ c) e0 in c { contAux = (contAux c) { contECont = econt } } -- | A computation with finalization part. finallyCont :: Cont a -> Cont b -> Cont a finallyCont (Cont m) (Cont m') = Cont $ \c0 -> Event $ \p -> do let c = c0 { contAux = (contAux c0) { contCatchFlag = True } } z <- contCanceled c if z then cancelCont p c else invokeEvent p $ m $ let cont a = Event $ \p -> invokeEvent p $ m' $ let cont b = contCont c a in c { contCont = cont } econt e = Event $ \p -> invokeEvent p $ m' $ let cont b = (contECont . contAux $ c) e in c { contCont = cont } ccont () = Event $ \p -> invokeEvent p $ m' $ let cont b = (contCCont . contAux $ c) () econt e = (contCCont . contAux $ c) () in c { contCont = cont, contAux = (contAux c) { contECont = econt } } in c { contCont = cont, contAux = (contAux c) { contECont = econt, contCCont = ccont } } -- | Throw the exception with the further exception handling. -- -- By some reason, an exception raised with help of the standard 'throw' function -- is not handled properly within 'Cont' computation, altough it will be still handled -- if it will be wrapped in the 'IO' monad. Therefore, you should use specialised -- functions like the stated one that use the 'throw' function but within the 'IO' computation, -- which allows already handling the exception. throwCont :: IOException -> Cont a throwCont = liftIO . throw -- | Run the 'Cont' computation with the specified cancelation source -- and flag indicating whether to catch exceptions from the beginning. runCont :: Cont a -- ^ the computation to run -> (a -> Event ()) -- ^ the main branch -> (SomeException -> Event ()) -- ^ the branch for handing exceptions -> (() -> Event ()) -- ^ the branch for cancellation -> ContId -- ^ the computation identifier -> Bool -- ^ whether to support the exception handling from the beginning -> Event () runCont (Cont m) cont econt ccont cid catchFlag = m ContParams { contCont = cont, contAux = ContParamsAux { contECont = econt, contCCont = ccont, contId = cid, contCancelFlag = contCancellationActivated cid, contCatchFlag = catchFlag } } -- | Lift the 'Parameter' computation. liftPC :: Parameter a -> Cont a liftPC (Parameter m) = Cont $ \c -> Event $ \p -> if contCatchFlag . contAux $ c then liftIOWithCatch (m $ pointRun p) p c else liftIOWithoutCatch (m $ pointRun p) p c -- | Lift the 'Simulation' computation. liftSC :: Simulation a -> Cont a liftSC (Simulation m) = Cont $ \c -> Event $ \p -> if contCatchFlag . contAux $ c then liftIOWithCatch (m $ pointRun p) p c else liftIOWithoutCatch (m $ pointRun p) p c -- | Lift the 'Dynamics' computation. liftDC :: Dynamics a -> Cont a liftDC (Dynamics m) = Cont $ \c -> Event $ \p -> if contCatchFlag . contAux $ c then liftIOWithCatch (m p) p c else liftIOWithoutCatch (m p) p c -- | Lift the 'Event' computation. liftEC :: Event a -> Cont a liftEC (Event m) = Cont $ \c -> Event $ \p -> if contCatchFlag . contAux $ c then liftIOWithCatch (m p) p c else liftIOWithoutCatch (m p) p c -- | Lift the IO computation. liftIOC :: IO a -> Cont a liftIOC m = Cont $ \c -> Event $ \p -> if contCatchFlag . contAux $ c then liftIOWithCatch m p c else liftIOWithoutCatch m p c liftIOWithoutCatch :: IO a -> Point -> ContParams a -> IO () {-# INLINE liftIOWithoutCatch #-} liftIOWithoutCatch m p c = do z <- contCanceled c if z then cancelCont p c else do a <- m invokeEvent p $ contCont c a liftIOWithCatch :: IO a -> Point -> ContParams a -> IO () {-# NOINLINE liftIOWithCatch #-} liftIOWithCatch m p c = do z <- contCanceled c if z then cancelCont p c else do aref <- newIORef undefined eref <- newIORef Nothing catch (m >>= writeIORef aref) (writeIORef eref . Just) e <- readIORef eref case e of Nothing -> do a <- readIORef aref -- tail recursive invokeEvent p $ contCont c a Just e -> -- tail recursive invokeEvent p $ (contECont . contAux) c e -- | Resume the computation by the specified parameters. resumeCont :: ContParams a -> a -> Event () {-# INLINE resumeCont #-} resumeCont c a = Event $ \p -> do z <- contCanceled c if z then cancelCont p c else invokeEvent p $ contCont c a -- | Resume the exception handling by the specified parameters. resumeECont :: ContParams a -> SomeException -> Event () {-# INLINE resumeECont #-} resumeECont c e = Event $ \p -> do z <- contCanceled c if z then cancelCont p c else invokeEvent p $ (contECont $ contAux c) e -- | Test whether the computation is canceled. contCanceled :: ContParams a -> IO Bool {-# INLINE contCanceled #-} contCanceled c = contCancelFlag $ contAux c -- | Execute the specified computations in parallel within -- the current computation and return their results. The cancellation -- of any of the nested computations affects the current computation. -- The exception raised in any of the nested computations is propogated -- to the current computation as well (if the exception handling is -- supported). -- -- Here word @parallel@ literally means that the computations are -- actually executed on a single operating system thread but -- they are processed simultaneously by the event queue. contParallel :: [(Cont a, ContId)] -- ^ the list of: -- the nested computation, -- the computation identifier -> Cont [a] contParallel xs = Cont $ \c -> Event $ \p -> do let n = length xs worker = do results <- newArray_ (1, n) :: IO (IOArray Int a) counter <- newIORef 0 catchRef <- newIORef Nothing hs <- invokeEvent p $ contCancellationBind (contId $ contAux c) $ map snd xs let propagate = Event $ \p -> do n' <- readIORef counter when (n' == n) $ do invokeEvent p $ disposeEvent hs -- unbind the cancellation sources f1 <- contCanceled c f2 <- readIORef catchRef case (f1, f2) of (False, Nothing) -> do rs <- getElems results invokeEvent p $ resumeCont c rs (False, Just e) -> invokeEvent p $ resumeECont c e (True, _) -> cancelCont p c cont i a = Event $ \p -> do modifyIORef counter (+ 1) writeArray results i a invokeEvent p propagate econt e = Event $ \p -> do modifyIORef counter (+ 1) r <- readIORef catchRef case r of Nothing -> writeIORef catchRef $ Just e Just e' -> return () -- ignore the next error invokeEvent p propagate ccont e = Event $ \p -> do modifyIORef counter (+ 1) -- the main computation was automatically canceled invokeEvent p propagate forM_ (zip [1..n] xs) $ \(i, (x, cid)) -> invokeEvent p $ runCont x (cont i) econt ccont cid (contCatchFlag $ contAux c) z <- contCanceled c if z then cancelCont p c else if n == 0 then invokeEvent p $ contCont c [] else worker -- | A partial case of 'contParallel' when we are not interested in -- the results but we are interested in the actions to be peformed by -- the nested computations. contParallel_ :: [(Cont a, ContId)] -- ^ the list of: -- the nested computation, -- the computation identifier -> Cont () contParallel_ xs = Cont $ \c -> Event $ \p -> do let n = length xs worker = do counter <- newIORef 0 catchRef <- newIORef Nothing hs <- invokeEvent p $ contCancellationBind (contId $ contAux c) $ map snd xs let propagate = Event $ \p -> do n' <- readIORef counter when (n' == n) $ do invokeEvent p $ disposeEvent hs -- unbind the cancellation sources f1 <- contCanceled c f2 <- readIORef catchRef case (f1, f2) of (False, Nothing) -> invokeEvent p $ resumeCont c () (False, Just e) -> invokeEvent p $ resumeECont c e (True, _) -> cancelCont p c cont i a = Event $ \p -> do modifyIORef counter (+ 1) -- ignore the result invokeEvent p propagate econt e = Event $ \p -> do modifyIORef counter (+ 1) r <- readIORef catchRef case r of Nothing -> writeIORef catchRef $ Just e Just e' -> return () -- ignore the next error invokeEvent p propagate ccont e = Event $ \p -> do modifyIORef counter (+ 1) -- the main computation was automatically canceled invokeEvent p propagate forM_ (zip [1..n] xs) $ \(i, (x, cid)) -> invokeEvent p $ runCont x (cont i) econt ccont cid (contCatchFlag $ contAux c) z <- contCanceled c if z then cancelCont p c else if n == 0 then invokeEvent p $ contCont c () else worker -- | Rerun the 'Cont' computation with the specified identifier. rerunCont :: Cont a -> ContId -> Cont a rerunCont x cid = Cont $ \c -> Event $ \p -> do let worker = do hs <- invokeEvent p $ contCancellationBind (contId $ contAux c) [cid] let cont a = Event $ \p -> do invokeEvent p $ disposeEvent hs -- unbind the cancellation source invokeEvent p $ resumeCont c a econt e = Event $ \p -> do invokeEvent p $ disposeEvent hs -- unbind the cancellation source invokeEvent p $ resumeECont c e ccont e = Event $ \p -> do invokeEvent p $ disposeEvent hs -- unbind the cancellation source cancelCont p c invokeEvent p $ runCont x cont econt ccont cid (contCatchFlag $ contAux c) z <- contCanceled c if z then cancelCont p c else worker -- | Run the 'Cont' computation in parallel but connect the computations. spawnCont :: ContCancellation -> Cont () -> ContId -> Cont () spawnCont cancellation x cid = Cont $ \c -> Event $ \p -> do let worker = do hs <- invokeEvent p $ contCancellationConnect (contId $ contAux c) cancellation cid let cont a = Event $ \p -> do invokeEvent p $ disposeEvent hs -- unbind the cancellation source -- do nothing and it will finish the computation econt e = Event $ \p -> do invokeEvent p $ disposeEvent hs -- unbind the cancellation source invokeEvent p $ throwEvent e -- this is all we can do ccont e = Event $ \p -> do invokeEvent p $ disposeEvent hs -- unbind the cancellation source -- do nothing and it will finish the computation invokeEvent p $ enqueueEvent (pointTime p) $ runCont x cont econt ccont cid False invokeEvent p $ resumeCont c () z <- contCanceled c if z then cancelCont p c else worker -- | Represents a temporarily frozen computation. newtype FrozenCont a = FrozenCont { unfreezeCont :: Event (Maybe (ContParams a)) -- ^ Unfreeze the computation. } -- | Freeze the computation parameters temporarily. freezeCont :: ContParams a -> Event (FrozenCont a) freezeCont c = Event $ \p -> do rh <- newIORef Nothing rc <- newIORef $ Just c h <- invokeEvent p $ handleSignal (contCancellationInitiating $ contId $ contAux c) $ \e -> Event $ \p -> do h <- readIORef rh case h of Nothing -> error "The handler was lost: freezeCont." Just h -> do invokeEvent p $ disposeEvent h c <- readIORef rc case c of Nothing -> return () Just c -> do writeIORef rc Nothing invokeEvent p $ enqueueEvent (pointTime p) $ Event $ \p -> do z <- contCanceled c when z $ cancelCont p c writeIORef rh (Just h) return $ FrozenCont $ Event $ \p -> do invokeEvent p $ disposeEvent h c <- readIORef rc writeIORef rc Nothing return c -- | Freeze the computation parameters specifying what should be done when reentering the computation. freezeContReentering :: ContParams a -> a -> Event () -> Event (FrozenCont a) freezeContReentering c a m = Event $ \p -> do rh <- newIORef Nothing rc <- newIORef $ Just c h <- invokeEvent p $ handleSignal (contCancellationInitiating $ contId $ contAux c) $ \e -> Event $ \p -> do h <- readIORef rh case h of Nothing -> error "The handler was lost: freezeContReentering." Just h -> do invokeEvent p $ disposeEvent h c <- readIORef rc case c of Nothing -> return () Just c -> do writeIORef rc Nothing invokeEvent p $ enqueueEvent (pointTime p) $ Event $ \p -> do z <- contCanceled c when z $ cancelCont p c writeIORef rh (Just h) return $ FrozenCont $ Event $ \p -> do invokeEvent p $ disposeEvent h c <- readIORef rc writeIORef rc Nothing case c of Nothing -> return Nothing z @ (Just c) -> do f <- invokeEvent p $ contPreemptionBegun $ contId $ contAux c if not f then return z else do let c = c { contCont = \a -> m } invokeEvent p $ sleepCont c a return Nothing -- | Reenter the computation parameters when needed. reenterCont :: ContParams a -> a -> Event () {-# INLINE reenterCont #-} reenterCont c a = Event $ \p -> do f <- invokeEvent p $ contPreemptionBegun $ contId $ contAux c if not f then invokeEvent p $ enqueueEvent (pointTime p) $ Event $ \p -> do f <- invokeEvent p $ contPreemptionBegun $ contId $ contAux c if not f then invokeEvent p $ resumeCont c a else invokeEvent p $ sleepCont c a else invokeEvent p $ sleepCont c a -- | Sleep until the preempted computation will be reentered. sleepCont :: ContParams a -> a -> Event () {-# NOINLINE sleepCont #-} sleepCont c a = Event $ \p -> do rh <- newIORef Nothing h <- invokeEvent p $ handleSignal (contSignal $ contId $ contAux c) $ \e -> Event $ \p -> do h <- readIORef rh case h of Nothing -> error "The handler was lost: sleepCont." Just h -> do invokeEvent p $ disposeEvent h case e of ContCancellationInitiating -> invokeEvent p $ enqueueEvent (pointTime p) $ Event $ \p -> do z <- contCanceled c when z $ cancelCont p c ContPreemptionEnding -> invokeEvent p $ enqueueEvent (pointTime p) $ reenterCont c a ContPreemptionBeginning -> error "The computation was already preempted: sleepCont." writeIORef rh (Just h) -- | Substitute the continuation. substituteCont :: ContParams a -> (a -> Event ()) -> ContParams a {-# INLINE substituteCont #-} substituteCont c m = c { contCont = m } -- | Await the signal. contAwait :: Signal a -> Cont a contAwait signal = Cont $ \c -> Event $ \p -> do c <- invokeEvent p $ freezeCont c r <- newIORef Nothing h <- invokeEvent p $ handleSignal signal $ \a -> Event $ \p -> do x <- readIORef r case x of Nothing -> error "The signal was lost: contAwait." Just x -> do invokeEvent p $ disposeEvent x c <- invokeEvent p $ unfreezeCont c case c of Nothing -> return () Just c -> invokeEvent p $ reenterCont c a writeIORef r $ Just h -- | Show the debug message with the current simulation time. traceCont :: String -> Cont a -> Cont a traceCont message (Cont m) = Cont $ \c -> Event $ \p -> do z <- contCanceled c if z then cancelCont p c else trace ("t = " ++ show (pointTime p) ++ ": " ++ message) $ invokeEvent p $ m c