module Simulation.Aivika.Trans.Net
       (
        Net(..),
        iterateNet,
        
        emptyNet,
        arrNet,
        accumNet,
        
        netUsingId,
        
        arrivalNet,
        
        delayNet,
        
        netProcessor,
        processorNet) where
import qualified Control.Category as C
import Control.Arrow
import Control.Monad.Trans
import Simulation.Aivika.Trans.Session
import Simulation.Aivika.Trans.ProtoRef
import Simulation.Aivika.Trans.Comp
import Simulation.Aivika.Trans.Parameter
import Simulation.Aivika.Trans.Simulation
import Simulation.Aivika.Trans.Dynamics
import Simulation.Aivika.Trans.Event
import Simulation.Aivika.Trans.Cont
import Simulation.Aivika.Trans.Process
import Simulation.Aivika.Trans.Stream
import Simulation.Aivika.Trans.QueueStrategy
import Simulation.Aivika.Trans.Resource
import Simulation.Aivika.Trans.Processor
import Simulation.Aivika.Trans.Ref
import Simulation.Aivika.Trans.Circuit
import Simulation.Aivika.Arrival (Arrival(..))
newtype Net m a b =
  Net { runNet :: a -> Process m (b, Net m a b)
        
      }
instance MonadComp m => C.Category (Net m) where
  id = Net $ \a -> return (a, C.id)
  (.) = dot
    where 
      (Net g) `dot` (Net f) =
        Net $ \a ->
        do (b, p1) <- f a
           (c, p2) <- g b
           return (c, p2 `dot` p1)
instance MonadComp m => Arrow (Net m) where
  arr f = Net $ \a -> return (f a, arr f)
  first (Net f) =
    Net $ \(b, d) ->
    do (c, p) <- f b
       return ((c, d), first p)
  second (Net f) =
    Net $ \(d, b) ->
    do (c, p) <- f b
       return ((d, c), second p)
  (Net f) *** (Net g) =
    Net $ \(b, b') ->
    do (c, p1) <- f b
       (c', p2) <- g b'
       return ((c, c'), p1 *** p2)
       
  (Net f) &&& (Net g) =
    Net $ \b ->
    do (c, p1) <- f b
       (c', p2) <- g b
       return ((c, c'), p1 &&& p2)
instance MonadComp m => ArrowChoice (Net m) where
  left x@(Net f) =
    Net $ \ebd ->
    case ebd of
      Left b ->
        do (c, p) <- f b
           return (Left c, left p)
      Right d ->
        return (Right d, left x)
  right x@(Net f) =
    Net $ \edb ->
    case edb of
      Right b ->
        do (c, p) <- f b
           return (Right c, right p)
      Left d ->
        return (Left d, right x)
  x@(Net f) +++ y@(Net g) =
    Net $ \ebb' ->
    case ebb' of
      Left b ->
        do (c, p1) <- f b
           return (Left c, p1 +++ y)
      Right b' ->
        do (c', p2) <- g b'
           return (Right c', x +++ p2)
  x@(Net f) ||| y@(Net g) =
    Net $ \ebc ->
    case ebc of
      Left b ->
        do (d, p1) <- f b
           return (d, p1 ||| y)
      Right b' ->
        do (d, p2) <- g b'
           return (d, x ||| p2)
emptyNet :: MonadComp m => Net m a b
emptyNet = Net $ const neverProcess
arrNet :: MonadComp m => (a -> Process m b) -> Net m a b
arrNet f =
  let x =
        Net $ \a ->
        do b <- f a
           return (b, x)
  in x
accumNet :: MonadComp m => (acc -> a -> Process m (acc, b)) -> acc -> Net m a b
accumNet f acc =
  Net $ \a ->
  do (acc', b) <- f acc a
     return (b, accumNet f acc') 
netUsingId :: MonadComp m => ProcessId m -> Net m a b -> Net m a b
netUsingId pid (Net f) =
  Net $ processUsingId pid . f
netProcessor :: MonadComp m => Net m a b -> Processor m a b
netProcessor = Processor . loop
  where loop x as =
          Cons $
          do (a, as') <- runStream as
             (b, x') <- runNet x a
             return (b, loop x' as')
processorNet :: MonadComp m => Processor m a b -> Net m a b
processorNet x =
  Net $ \a ->
  do readingA <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1)
     writingA <- liftSimulation $ newResourceWithMaxCount FCFS 1 (Just 1)
     readingB <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1)
     writingB <- liftSimulation $ newResourceWithMaxCount FCFS 1 (Just 1)
     conting  <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1)
     sn <- liftParameter simulationSession
     refA <- liftComp $ newProtoRef sn Nothing
     refB <- liftComp $ newProtoRef sn Nothing
     let input =
           do requestResource readingA
              Just a <- liftComp $ readProtoRef refA
              liftComp $ writeProtoRef refA Nothing
              releaseResource writingA
              return (a, Cons input)
         consume bs =
           do (b, bs') <- runStream bs
              requestResource writingB
              liftComp $ writeProtoRef refB (Just b)
              releaseResource readingB
              requestResource conting
              consume bs'
         loop a =
           do requestResource writingA
              liftComp $ writeProtoRef refA (Just a)
              releaseResource readingA
              requestResource readingB
              Just b <- liftComp $ readProtoRef refB
              liftComp $ writeProtoRef refB Nothing
              releaseResource writingB
              return (b, Net $ \a -> releaseResource conting >> loop a)
     spawnProcess $
       consume $ runProcessor x (Cons input)
     loop a
arrivalNet :: MonadComp m => Net m a (Arrival a)
arrivalNet =
  let loop t0 =
        Net $ \a ->
        do t <- liftDynamics time
           let b = Arrival { arrivalValue = a,
                             arrivalTime  = t,
                             arrivalDelay = 
                               case t0 of
                                 Nothing -> Nothing
                                 Just t0 -> Just (t  t0) }
           return (b, loop $ Just t)
  in loop Nothing
delayNet :: MonadComp m => a -> Net m a a
delayNet a0 =
  Net $ \a ->
  return (a0, delayNet a)
iterateNet :: MonadComp m => Net m a a -> a -> Process m ()
iterateNet (Net f) a =
  do (a', x) <- f a
     iterateNet x a'