module Simulation.Aivika.Trans.Generator.Primitive where
import Control.Monad
import Control.Monad.Trans
import Simulation.Aivika.Generator (DiscretePDF)
generateUniform01 :: Monad m
                     => m Double
                     
                     -> Double
                     
                     -> Double
                     
                     -> m Double
generateUniform01 g min max =
  do x <- g
     return $ min + x * (max  min)
generateUniformInt01 :: Monad m
                        => m Double
                        
                        -> Int
                        
                        -> Int
                        
                        -> m Int
generateUniformInt01 g min max =
  do x <- g
     let min' = fromIntegral min
         max' = fromIntegral max
     return $ round (min' + x * (max'  min'))
generateTriangular01 :: Monad m
                        => m Double
                        
                        -> Double
                        
                        -> Double
                        
                        -> Double
                        
                        -> m Double
generateTriangular01 g min median max =
  do x <- g
     if x <= (median  min) / (max  min)
       then return $ min + sqrt ((median  min) * (max  min) * x)
       else return $ max  sqrt ((max  median) * (max  min) * (1  x))
generateNormal01 :: Monad m
                    => m Double
                    
                    -> Double
                    
                    -> Double
                    
                    -> m Double
generateNormal01 g mu nu =
  do x <- g
     return $ mu + nu * x
generateLogNormal01 :: Monad m
                       => m Double
                       
                       -> Double
                       
                       -> Double
                       
                       -> m Double
generateLogNormal01 g mu nu =
  do x <- g
     return $ exp (mu + nu * x)
generateExponential01 :: Monad m
                         => m Double
                         
                         -> Double
                         
                         -> m Double
generateExponential01 g mu =
  do x <- g
     return ( log x * mu)
generateErlang01 :: Monad m
                    => m Double
                    
                    -> Double
                    
                    -> Int
                    
                    -> m Double
generateErlang01 g beta m =
  do x <- loop m 1
     return ( log x * beta)
       where loop m acc
               | m < 0     = error "Negative shape: generateErlang."
               | m == 0    = return acc
               | otherwise = do x <- g
                                loop (m  1) (x * acc)
generatePoisson01 :: Monad m
                     => m Double
                     
                     -> Double
                     
                     -> m Int
generatePoisson01 g mu =
  do prob0 <- g
     let loop prob prod acc
           | prob <= prod = return acc
           | otherwise    = loop
                            (prob  prod)
                            (prod * mu / fromIntegral (acc + 1))
                            (acc + 1)
     loop prob0 (exp ( mu)) 0
generateBinomial01 :: Monad m
                      => m Double
                      
                      -> Double 
                      
                      -> Int
                      
                      -> m Int
generateBinomial01 g prob trials = loop trials 0 where
  loop n acc
    | n < 0     = error "Negative number of trials: generateBinomial."
    | n == 0    = return acc
    | otherwise = do x <- g
                     if x <= prob
                       then loop (n  1) (acc + 1)
                       else loop (n  1) acc
generateGamma01 :: Monad m
                   => m Double
                   
                   -> m Double
                   
                   -> Double
                   
                   -> Double
                   
                   -> m Double
generateGamma01 gn gu kappa theta
  | kappa <= 0 = error "The shape parameter (kappa) must be positive: generateGamma01"
  | kappa > 1  =
    let d = kappa  1 / 3
        c = 1 / sqrt (9 * d)
        loop =
          do z <- gn
             if z <=  (1 / c)
               then loop
               else do let v = (1 + c * z) ** 3
                       u <- gu
                       if log u > 0.5 * z * z + d  d * v + d * log v
                         then loop
                         else return $ d * v * theta
    in loop
  | otherwise  =
    do x <- generateGamma01 gn gu (1 + kappa) theta
       u <- gu
       return $ x * u ** (1 / kappa)
generateBeta01 :: Monad m
                  => m Double
                  
                  -> m Double
                  
                  -> Double
                  
                  -> Double
                  
                  -> m Double
generateBeta01 gn gu alpha beta =
  do g1 <- generateGamma01 gn gu alpha 1
     g2 <- generateGamma01 gn gu beta 1
     return $ g1 / (g1 + g2)
generateWeibull01 :: Monad m
                     => m Double
                     
                     -> Double
                     
                     -> Double
                     
                     -> m Double
generateWeibull01 g alpha beta =
  do x <- g
     return $ beta * ( log x) ** (1 / alpha)
generateDiscrete01 :: Monad m
                      => m Double
                      
                      -> DiscretePDF a
                      
                      -> m a
generateDiscrete01 g []   = error "Empty PDF: generateDiscrete01"
generateDiscrete01 g dpdf =
  do x <- g
     let loop acc [(a, p)] = a
         loop acc ((a, p) : dpdf) =
           if x <= acc + p
           then a
           else loop (acc + p) dpdf
     return $ loop 0 dpdf