module Simulation.Aivika.Trans.Circuit
       (
        Circuit(..),
        iterateCircuitInIntegTimes,
        iterateCircuitInIntegTimes_,
        iterateCircuitInIntegTimesMaybe,
        iterateCircuitInIntegTimesEither,
        iterateCircuitInTimes,
        iterateCircuitInTimes_,
        iterateCircuitInTimesMaybe,
        iterateCircuitInTimesEither,
        
        arrCircuit,
        accumCircuit,
        
        arrivalCircuit,
        
        delayCircuit,
        
        timeCircuit,
        
        (<?<),
        (>?>),
        filterCircuit,
        filterCircuitM,
        neverCircuit,
        
        circuitSignaling,
        circuitProcessor,
        
        integCircuit,
        integCircuitEither,
        sumCircuit,
        sumCircuitEither,
        
        circuitTransform,
        
        traceCircuit) where
import qualified Control.Category as C
import Control.Arrow
import Control.Monad.Fix
import Simulation.Aivika.Trans.Ref.Base
import Simulation.Aivika.Trans.DES
import Simulation.Aivika.Trans.SD
import Simulation.Aivika.Trans.Internal.Specs
import Simulation.Aivika.Trans.Internal.Simulation
import Simulation.Aivika.Trans.Internal.Dynamics
import Simulation.Aivika.Trans.Internal.Event
import Simulation.Aivika.Trans.Dynamics.Memo
import Simulation.Aivika.Trans.Transform
import Simulation.Aivika.Trans.SystemDynamics
import Simulation.Aivika.Trans.Signal
import Simulation.Aivika.Trans.Stream
import Simulation.Aivika.Trans.Process
import Simulation.Aivika.Trans.Processor
import Simulation.Aivika.Trans.Task
import Simulation.Aivika.Arrival (Arrival(..))
newtype Circuit m a b =
  Circuit { runCircuit :: a -> Event m (b, Circuit m a b)
            
          }
instance MonadDES m => C.Category (Circuit m) where
  
  id = Circuit $ \a -> return (a, C.id)
  
  (.) = dot
    where 
      (Circuit g) `dot` (Circuit f) =
        Circuit $ \a ->
        Event $ \p ->
        do (b, cir1) <- invokeEvent p (f a)
           (c, cir2) <- invokeEvent p (g b)
           return (c, cir2 `dot` cir1)
instance MonadDES m => Arrow (Circuit m) where
  
  arr f = Circuit $ \a -> return (f a, arr f)
  
  first (Circuit f) =
    Circuit $ \(b, d) ->
    Event $ \p ->
    do (c, cir) <- invokeEvent p (f b)
       return ((c, d), first cir)
  
  second (Circuit f) =
    Circuit $ \(d, b) ->
    Event $ \p ->
    do (c, cir) <- invokeEvent p (f b)
       return ((d, c), second cir)
  
  (Circuit f) *** (Circuit g) =
    Circuit $ \(b, b') ->
    Event $ \p ->
    do (c, cir1) <- invokeEvent p (f b)
       (c', cir2) <- invokeEvent p (g b')
       return ((c, c'), cir1 *** cir2)
       
  
  (Circuit f) &&& (Circuit g) =
    Circuit $ \b ->
    Event $ \p ->
    do (c, cir1) <- invokeEvent p (f b)
       (c', cir2) <- invokeEvent p (g b)
       return ((c, c'), cir1 &&& cir2)
instance (MonadDES m, MonadFix m) => ArrowLoop (Circuit m) where
  
  loop (Circuit f) =
    Circuit $ \b ->
    Event $ \p ->
    do rec ((c, d), cir) <- invokeEvent p (f (b, d))
       return (c, loop cir)
instance MonadDES m => ArrowChoice (Circuit m) where
  
  left x@(Circuit f) =
    Circuit $ \ebd ->
    Event $ \p ->
    case ebd of
      Left b ->
        do (c, cir) <- invokeEvent p (f b)
           return (Left c, left cir)
      Right d ->
        return (Right d, left x)
  
  right x@(Circuit f) =
    Circuit $ \edb ->
    Event $ \p ->
    case edb of
      Right b ->
        do (c, cir) <- invokeEvent p (f b)
           return (Right c, right cir)
      Left d ->
        return (Left d, right x)
  
  x@(Circuit f) +++ y@(Circuit g) =
    Circuit $ \ebb' ->
    Event $ \p ->
    case ebb' of
      Left b ->
        do (c, cir1) <- invokeEvent p (f b)
           return (Left c, cir1 +++ y)
      Right b' ->
        do (c', cir2) <- invokeEvent p (g b')
           return (Right c', x +++ cir2)
  
  x@(Circuit f) ||| y@(Circuit g) =
    Circuit $ \ebc ->
    Event $ \p ->
    case ebc of
      Left b ->
        do (d, cir1) <- invokeEvent p (f b)
           return (d, cir1 ||| y)
      Right b' ->
        do (d, cir2) <- invokeEvent p (g b')
           return (d, x ||| cir2)
circuitSignaling :: MonadDES m => Circuit m a b -> Signal m a -> Signal m b
circuitSignaling (Circuit cir) sa =
  Signal { handleSignal = \f ->
            do r <- liftSimulation $ newRef cir
               handleSignal sa $ \a ->
                 Event $ \p ->
                 do cir <- invokeEvent p $ readRef r
                    (b, Circuit cir') <- invokeEvent p (cir a)
                    invokeEvent p $ writeRef r cir'
                    invokeEvent p (f b) }
circuitProcessor :: MonadDES m => Circuit m a b -> Processor m a b
circuitProcessor (Circuit cir) = Processor $ \sa ->
  Cons $
  do (a, xs) <- runStream sa
     (b, cir') <- liftEvent (cir a)
     let f = runProcessor (circuitProcessor cir')
     return (b, f xs)
arrCircuit :: MonadDES m => (a -> Event m b) -> Circuit m a b
arrCircuit f =
  let x =
        Circuit $ \a ->
        Event $ \p ->
        do b <- invokeEvent p (f a)
           return (b, x)
  in x
accumCircuit :: MonadDES m => (acc -> a -> Event m (acc, b)) -> acc -> Circuit m a b
accumCircuit f acc =
  Circuit $ \a ->
  Event $ \p ->
  do (acc', b) <- invokeEvent p (f acc a)
     return (b, accumCircuit f acc') 
arrivalCircuit :: MonadDES m => Circuit m a (Arrival a)
arrivalCircuit =
  let loop t0 =
        Circuit $ \a ->
        Event $ \p ->
        let t = pointTime p
            b = Arrival { arrivalValue = a,
                          arrivalTime  = t,
                          arrivalDelay = 
                            case t0 of
                              Nothing -> Nothing
                              Just t0 -> Just (t  t0) }
        in return (b, loop $ Just t)
  in loop Nothing
delayCircuit :: MonadDES m => a -> Circuit m a a
delayCircuit a0 =
  Circuit $ \a ->
  return (a0, delayCircuit a)
timeCircuit :: MonadDES m => Circuit m a Double
timeCircuit =
  Circuit $ \a ->
  Event $ \p ->
  return (pointTime p, timeCircuit)
(>?>) :: MonadDES m
         => Circuit m a (Maybe b)
         
         -> Circuit m b c
         
         -> Circuit m a (Maybe c)
         
whether >?> process =
  Circuit $ \a ->
  Event $ \p ->
  do (b, whether') <- invokeEvent p (runCircuit whether a)
     case b of
       Nothing ->
         return (Nothing, whether' >?> process)
       Just b  ->
         do (c, process') <- invokeEvent p (runCircuit process b)
            return (Just c, whether' >?> process')
(<?<) :: MonadDES m
         => Circuit m b c
         
         -> Circuit m a (Maybe b)
         
         -> Circuit m a (Maybe c)
         
(<?<) = flip (>?>)
filterCircuit :: MonadDES m => (a -> Bool) -> Circuit m a b -> Circuit m a (Maybe b)
filterCircuit pred = filterCircuitM (return . pred)
filterCircuitM :: MonadDES m => (a -> Event m Bool) -> Circuit m a b -> Circuit m a (Maybe b)
filterCircuitM pred cir =
  Circuit $ \a ->
  Event $ \p ->
  do x <- invokeEvent p (pred a)
     if x
       then do (b, cir') <- invokeEvent p (runCircuit cir a)
               return (Just b, filterCircuitM pred cir')
       else return (Nothing, filterCircuitM pred cir)
neverCircuit :: MonadDES m => Circuit m a (Maybe b)
neverCircuit =
  Circuit $ \a -> return (Nothing, neverCircuit)
integCircuit :: MonadDES m
                => Double
                
                -> Circuit m Double Double
                
integCircuit init = start
  where
    start = 
      Circuit $ \a ->
      Event $ \p ->
      do let t = pointTime p
         return (init, next t init a)
    next t0 v0 a0 =
      Circuit $ \a ->
      Event $ \p ->
      do let t  = pointTime p
             dt = t  t0
             v  = v0 + a0 * dt
         v `seq` return (v, next t v a)
integCircuitEither :: MonadDES m
                      => Double
                      
                      -> Circuit m (Either Double Double) Double
                      
                      
integCircuitEither init = start
  where
    start = 
      Circuit $ \a ->
      Event $ \p ->
      do let t = pointTime p
         return (init, next t init a)
    next t0 v0 a0 =
      Circuit $ \a ->
      Event $ \p ->
      do let t = pointTime p
         case a0 of
           Left v ->
             v `seq` return (v, next t v a)
           Right a0 -> do
             let dt = t  t0
                 v  = v0 + a0 * dt
             v `seq` return (v, next t v a)
sumCircuit :: (MonadDES m, Num a)
              => a
              
              -> Circuit m a a
              
sumCircuit init = start
  where
    start = 
      Circuit $ \a ->
      Event $ \p ->
      return (init, next init a)
    next v0 a0 =
      Circuit $ \a ->
      Event $ \p ->
      do let v = v0 + a0
         v `seq` return (v, next v a)
sumCircuitEither :: (MonadDES m, Num a)
                    => a
                    
                    -> Circuit m (Either a a) a
                    
                    
sumCircuitEither init = start
  where
    start = 
      Circuit $ \a ->
      Event $ \p ->
      return (init, next init a)
    next v0 a0 =
      Circuit $ \a ->
      Event $ \p ->
      case a0 of
        Left v ->
          v `seq` return (v, next v a)
        Right a0 -> do
          let v = v0 + a0
          v `seq` return (v, next v a)
circuitTransform :: (MonadSD m, MonadDES m) => Circuit m a b -> Transform m a b
circuitTransform cir = Transform start
  where
    start m =
      Simulation $ \r ->
      do ref <- invokeSimulation r $ newRef cir
         invokeSimulation r $
           memo0Dynamics (next ref m)
    next ref m =
      Dynamics $ \p ->
      do a <- invokeDynamics p m
         invokeDynamics p $
           runEvent $
           Event $ \p ->
           do cir <- invokeEvent p $ readRef ref
              (b, cir') <- invokeEvent p $ runCircuit cir a
              invokeEvent p $ writeRef ref cir'
              return b
iterateCircuitInPoints_ :: MonadDES m => [Point m] -> Circuit m a a -> a -> Event m ()
iterateCircuitInPoints_ [] cir a = return ()
iterateCircuitInPoints_ (p : ps) cir a =
  enqueueEvent (pointTime p) $
  Event $ \p' ->
  do (a', cir') <- invokeEvent p $ runCircuit cir a
     invokeEvent p $ iterateCircuitInPoints_ ps cir' a'
iterateCircuitInPoints :: MonadDES m => [Point m] -> Circuit m a a -> a -> Event m (Task m a)
iterateCircuitInPoints ps cir a =
  do let loop [] cir a source = triggerSignal source a
         loop (p : ps) cir a source =
           enqueueEvent (pointTime p) $
           Event $ \p' ->
           do (a', cir') <- invokeEvent p $ runCircuit cir a
              invokeEvent p $ loop ps cir' a' source
     source <- liftSimulation newSignalSource
     task <- runTask $ processAwait $ publishSignal source
     loop ps cir a source
     return task
iterateCircuitInIntegTimes_ :: MonadDES m => Circuit m a a -> a -> Event m ()
iterateCircuitInIntegTimes_ cir a =
  Event $ \p ->
  do let ps = integPointsStartingFrom p
     invokeEvent p $ 
       iterateCircuitInPoints_ ps cir a
iterateCircuitInTimes_ :: MonadDES m => [Double] -> Circuit m a a -> a -> Event m ()
iterateCircuitInTimes_ ts cir a =
  Event $ \p ->
  do let ps = map (pointAt $ pointRun p) ts
     invokeEvent p $ 
       iterateCircuitInPoints_ ps cir a 
iterateCircuitInIntegTimes :: MonadDES m => Circuit m a a -> a -> Event m (Task m a)
iterateCircuitInIntegTimes cir a =
  Event $ \p ->
  do let ps = integPointsStartingFrom p
     invokeEvent p $ 
       iterateCircuitInPoints ps cir a
iterateCircuitInTimes :: MonadDES m => [Double] -> Circuit m a a -> a -> Event m (Task m a)
iterateCircuitInTimes ts cir a =
  Event $ \p ->
  do let ps = map (pointAt $ pointRun p) ts
     invokeEvent p $ 
       iterateCircuitInPoints ps cir a 
iterateCircuitInPointsMaybe :: MonadDES m => [Point m] -> Circuit m a (Maybe a) -> a -> Event m ()
iterateCircuitInPointsMaybe [] cir a = return ()
iterateCircuitInPointsMaybe (p : ps) cir a =
  enqueueEvent (pointTime p) $
  Event $ \p' ->
  do (a', cir') <- invokeEvent p $ runCircuit cir a
     case a' of
       Nothing -> return ()
       Just a' ->
         invokeEvent p $ iterateCircuitInPointsMaybe ps cir' a'
iterateCircuitInIntegTimesMaybe :: MonadDES m => Circuit m a (Maybe a) -> a -> Event m ()
iterateCircuitInIntegTimesMaybe cir a =
  Event $ \p ->
  do let ps = integPointsStartingFrom p
     invokeEvent p $ 
       iterateCircuitInPointsMaybe ps cir a
iterateCircuitInTimesMaybe :: MonadDES m => [Double] -> Circuit m a (Maybe a) -> a -> Event m ()
iterateCircuitInTimesMaybe ts cir a =
  Event $ \p ->
  do let ps = map (pointAt $ pointRun p) ts
     invokeEvent p $ 
       iterateCircuitInPointsMaybe ps cir a
iterateCircuitInPointsEither :: MonadDES m => [Point m] -> Circuit m a (Either b a) -> a -> Event m (Task m (Either b a))
iterateCircuitInPointsEither ps cir a =
  do let loop [] cir ba source = triggerSignal source ba
         loop ps cir ba@(Left b) source = triggerSignal source ba 
         loop (p : ps) cir (Right a) source =
           enqueueEvent (pointTime p) $
           Event $ \p' ->
           do (ba', cir') <- invokeEvent p $ runCircuit cir a
              invokeEvent p $ loop ps cir' ba' source
     source <- liftSimulation newSignalSource
     task <- runTask $ processAwait $ publishSignal source
     loop ps cir (Right a) source
     return task
iterateCircuitInIntegTimesEither :: MonadDES m => Circuit m a (Either b a) -> a -> Event m (Task m (Either b a))
iterateCircuitInIntegTimesEither cir a =
  Event $ \p ->
  do let ps = integPointsStartingFrom p
     invokeEvent p $ 
       iterateCircuitInPointsEither ps cir a
iterateCircuitInTimesEither :: MonadDES m => [Double] -> Circuit m a (Either b a) -> a -> Event m (Task m (Either b a))
iterateCircuitInTimesEither ts cir a =
  Event $ \p ->
  do let ps = map (pointAt $ pointRun p) ts
     invokeEvent p $ 
       iterateCircuitInPointsEither ps cir a
traceCircuit :: MonadDES m
                => Maybe String
                
                -> Maybe String
                
                -> Circuit m a b
                
                -> Circuit m a b
traceCircuit request response cir = Circuit $ loop cir where
  loop cir a =
    do (b, cir') <-
         case request of
           Nothing -> runCircuit cir a
           Just message -> 
             traceEvent message $
             runCircuit cir a
       case response of
         Nothing -> return (b, Circuit $ loop cir')
         Just message ->
           traceEvent message $
           return (b, Circuit $ loop cir')