-- | -- Module : Simulation.Aivika.Trans.Operation -- Copyright : Copyright (c) 2009-2017, David Sorokin -- License : BSD3 -- Maintainer : David Sorokin -- Stability : experimental -- Tested with: GHC 8.0.1 -- -- It defines a stateless activity, some simplification of 'Server' and 'Activity'. module Simulation.Aivika.Trans.Operation (-- * Operation Operation, newOperation, newPreemptibleOperation, -- * Processing operationProcess, -- * Operation Properties operationTotalUtilisationTime, operationTotalPreemptionTime, operationUtilisationTime, operationPreemptionTime, operationUtilisationFactor, operationPreemptionFactor, -- * Statistics Reset resetOperation, -- * Summary operationSummary, -- * Derived Signals for Properties operationTotalUtilisationTimeChanged, operationTotalUtilisationTimeChanged_, operationTotalPreemptionTimeChanged, operationTotalPreemptionTimeChanged_, operationUtilisationTimeChanged, operationUtilisationTimeChanged_, operationPreemptionTimeChanged, operationPreemptionTimeChanged_, operationUtilisationFactorChanged, operationUtilisationFactorChanged_, operationPreemptionFactorChanged, operationPreemptionFactorChanged_, -- * Basic Signals operationUtilising, operationUtilised, operationPreemptionBeginning, operationPreemptionEnding, -- * Overall Signal operationChanged_) where import Data.Monoid import Control.Monad import Control.Monad.Trans import Simulation.Aivika.Trans.Ref.Base import Simulation.Aivika.Trans.DES import Simulation.Aivika.Trans.Parameter import Simulation.Aivika.Trans.Simulation import Simulation.Aivika.Trans.Dynamics import Simulation.Aivika.Trans.Internal.Specs import Simulation.Aivika.Trans.Internal.Event import Simulation.Aivika.Trans.Signal import Simulation.Aivika.Trans.Cont import Simulation.Aivika.Trans.Process import Simulation.Aivika.Trans.Activity import Simulation.Aivika.Trans.Server import Simulation.Aivika.Trans.Statistics -- | Like 'Server' it models an activity that takes @a@ and provides @b@. -- But unlike the former this kind of activity has no state. Also it is destined -- to be used within 'Process' computations. data Operation m a b = Operation { operationInitProcess :: a -> Process m b, -- ^ Provide @b@ by specified @a@. operationProcessPreemptible :: Bool, -- ^ Whether the process is preemptible. operationStartTimeRef :: Ref m Double, -- ^ The start time of creating the operation. operationLastTimeRef :: Ref m Double, -- ^ The last time of utilising the operation activity. operationTotalUtilisationTimeRef :: Ref m Double, -- ^ The counted total time of utilising the activity. operationTotalPreemptionTimeRef :: Ref m Double, -- ^ The counted total time when the activity was preempted. operationUtilisationTimeRef :: Ref m (SamplingStats Double), -- ^ The statistics for the utilisation time. operationPreemptionTimeRef :: Ref m (SamplingStats Double), -- ^ The statistics for the time when the activity was preempted. operationUtilisingSource :: SignalSource m a, -- ^ A signal raised when starting to utilise the activity. operationUtilisedSource :: SignalSource m (a, b), -- ^ A signal raised when the activity has been utilised. operationPreemptionBeginningSource :: SignalSource m a, -- ^ A signal raised when the utilisation was preempted. operationPreemptionEndingSource :: SignalSource m a -- ^ A signal raised when the utilisation was proceeded after it had been preempted earlier. } -- | Create a new operation that can provide output @b@ by input @a@. -- -- By default, it is assumed that the activity utilisation cannot be preempted, -- because the handling of possible task preemption is rather costly -- operation. newOperation :: MonadDES m => (a -> Process m b) -- ^ provide an output by the specified input -> Event m (Operation m a b) {-# INLINABLE newOperation #-} newOperation = newPreemptibleOperation False -- | Create a new operation that can provide output @b@ by input @a@. newPreemptibleOperation :: MonadDES m => Bool -- ^ whether the activity can be preempted -> (a -> Process m b) -- ^ provide an output by the specified input -> Event m (Operation m a b) {-# INLINABLE newPreemptibleOperation #-} newPreemptibleOperation preemptible provide = do t0 <- liftDynamics time r' <- liftSimulation $ newRef t0 r0 <- liftSimulation $ newRef t0 r1 <- liftSimulation $ newRef 0 r2 <- liftSimulation $ newRef 0 r3 <- liftSimulation $ newRef emptySamplingStats r4 <- liftSimulation $ newRef emptySamplingStats s1 <- liftSimulation newSignalSource s2 <- liftSimulation newSignalSource s3 <- liftSimulation newSignalSource s4 <- liftSimulation newSignalSource return Operation { operationInitProcess = provide, operationProcessPreemptible = preemptible, operationStartTimeRef = r', operationLastTimeRef = r0, operationTotalUtilisationTimeRef = r1, operationTotalPreemptionTimeRef = r2, operationUtilisationTimeRef = r3, operationPreemptionTimeRef = r4, operationUtilisingSource = s1, operationUtilisedSource = s2, operationPreemptionBeginningSource = s3, operationPreemptionEndingSource = s4 } -- | Return a computation for the specified operation. It updates internal counters. -- -- The computation can be used only within one process at any time. operationProcess :: MonadDES m => Operation m a b -> a -> Process m b {-# INLINABLE operationProcess #-} operationProcess op a = do t0 <- liftDynamics time liftEvent $ triggerSignal (operationUtilisingSource op) a -- utilise the activity (b, dt) <- if operationProcessPreemptible op then operationProcessPreempting op a else do b <- operationInitProcess op a return (b, 0) t1 <- liftDynamics time liftEvent $ do modifyRef (operationTotalUtilisationTimeRef op) (+ (t1 - t0 - dt)) modifyRef (operationUtilisationTimeRef op) $ addSamplingStats (t1 - t0 - dt) writeRef (operationLastTimeRef op) t1 triggerSignal (operationUtilisedSource op) (a, b) return b -- | Process the input with ability to handle a possible preemption. operationProcessPreempting :: MonadDES m => Operation m a b -> a -> Process m (b, Double) {-# INLINABLE operationProcessPreempting #-} operationProcessPreempting op a = do pid <- processId t0 <- liftDynamics time rs <- liftSimulation $ newRef 0 r0 <- liftSimulation $ newRef t0 h1 <- liftEvent $ handleSignal (processPreemptionBeginning pid) $ \() -> do t0 <- liftDynamics time writeRef r0 t0 triggerSignal (operationPreemptionBeginningSource op) a h2 <- liftEvent $ handleSignal (processPreemptionEnding pid) $ \() -> do t0 <- readRef r0 t1 <- liftDynamics time let dt = t1 - t0 modifyRef rs (+ dt) modifyRef (operationTotalPreemptionTimeRef op) (+ dt) modifyRef (operationPreemptionTimeRef op) $ addSamplingStats dt writeRef (operationLastTimeRef op) t1 triggerSignal (operationPreemptionEndingSource op) a let m1 = do b <- operationInitProcess op a dt <- liftEvent $ readRef rs return (b, dt) m2 = liftEvent $ do disposeEvent h1 disposeEvent h2 finallyProcess m1 m2 -- | Return the counted total time when the operation activity was utilised. -- -- The value returned changes discretely and it is usually delayed relative -- to the current simulation time. -- -- See also 'operationTotalUtilisationTimeChanged' and 'operationTotalUtilisationTimeChanged_'. operationTotalUtilisationTime :: MonadDES m => Operation m a b -> Event m Double {-# INLINABLE operationTotalUtilisationTime #-} operationTotalUtilisationTime op = Event $ \p -> invokeEvent p $ readRef (operationTotalUtilisationTimeRef op) -- | Signal when the 'operationTotalUtilisationTime' property value has changed. operationTotalUtilisationTimeChanged :: MonadDES m => Operation m a b -> Signal m Double {-# INLINABLE operationTotalUtilisationTimeChanged #-} operationTotalUtilisationTimeChanged op = mapSignalM (const $ operationTotalUtilisationTime op) (operationTotalUtilisationTimeChanged_ op) -- | Signal when the 'operationTotalUtilisationTime' property value has changed. operationTotalUtilisationTimeChanged_ :: MonadDES m => Operation m a b -> Signal m () {-# INLINABLE operationTotalUtilisationTimeChanged_ #-} operationTotalUtilisationTimeChanged_ op = mapSignal (const ()) (operationUtilised op) -- | Return the counted total time when the operation activity was preemted waiting for -- the further proceeding. -- -- The value returned changes discretely and it is usually delayed relative -- to the current simulation time. -- -- See also 'operationTotalPreemptionTimeChanged' and 'operationTotalPreemptionTimeChanged_'. operationTotalPreemptionTime :: MonadDES m => Operation m a b -> Event m Double {-# INLINABLE operationTotalPreemptionTime #-} operationTotalPreemptionTime op = Event $ \p -> invokeEvent p $ readRef (operationTotalPreemptionTimeRef op) -- | Signal when the 'operationTotalPreemptionTime' property value has changed. operationTotalPreemptionTimeChanged :: MonadDES m => Operation m a b -> Signal m Double {-# INLINABLE operationTotalPreemptionTimeChanged #-} operationTotalPreemptionTimeChanged op = mapSignalM (const $ operationTotalPreemptionTime op) (operationTotalPreemptionTimeChanged_ op) -- | Signal when the 'operationTotalPreemptionTime' property value has changed. operationTotalPreemptionTimeChanged_ :: MonadDES m => Operation m a b -> Signal m () {-# INLINABLE operationTotalPreemptionTimeChanged_ #-} operationTotalPreemptionTimeChanged_ op = mapSignal (const ()) (operationPreemptionEnding op) -- | Return the statistics for the time when the operation activity was utilised. -- -- The value returned changes discretely and it is usually delayed relative -- to the current simulation time. -- -- See also 'operationUtilisationTimeChanged' and 'operationUtilisationTimeChanged_'. operationUtilisationTime :: MonadDES m => Operation m a b -> Event m (SamplingStats Double) {-# INLINABLE operationUtilisationTime #-} operationUtilisationTime op = Event $ \p -> invokeEvent p $ readRef (operationUtilisationTimeRef op) -- | Signal when the 'operationUtilisationTime' property value has changed. operationUtilisationTimeChanged :: MonadDES m => Operation m a b -> Signal m (SamplingStats Double) {-# INLINABLE operationUtilisationTimeChanged #-} operationUtilisationTimeChanged op = mapSignalM (const $ operationUtilisationTime op) (operationUtilisationTimeChanged_ op) -- | Signal when the 'operationUtilisationTime' property value has changed. operationUtilisationTimeChanged_ :: MonadDES m => Operation m a b -> Signal m () {-# INLINABLE operationUtilisationTimeChanged_ #-} operationUtilisationTimeChanged_ op = mapSignal (const ()) (operationUtilised op) -- | Return the statistics for the time when the operation activity was preempted -- waiting for the further proceeding. -- -- The value returned changes discretely and it is usually delayed relative -- to the current simulation time. -- -- See also 'operationPreemptionTimeChanged' and 'operationPreemptionTimeChanged_'. operationPreemptionTime :: MonadDES m => Operation m a b -> Event m (SamplingStats Double) {-# INLINABLE operationPreemptionTime #-} operationPreemptionTime op = Event $ \p -> invokeEvent p $ readRef (operationPreemptionTimeRef op) -- | Signal when the 'operationPreemptionTime' property value has changed. operationPreemptionTimeChanged :: MonadDES m => Operation m a b -> Signal m (SamplingStats Double) {-# INLINABLE operationPreemptionTimeChanged #-} operationPreemptionTimeChanged op = mapSignalM (const $ operationPreemptionTime op) (operationPreemptionTimeChanged_ op) -- | Signal when the 'operationPreemptionTime' property value has changed. operationPreemptionTimeChanged_ :: MonadDES m => Operation m a b -> Signal m () {-# INLINABLE operationPreemptionTimeChanged_ #-} operationPreemptionTimeChanged_ op = mapSignal (const ()) (operationPreemptionEnding op) -- | It returns the factor changing from 0 to 1, which estimates how often -- the operation activity was utilised since the time of creating the operation. -- -- The value returned changes discretely and it is usually delayed relative -- to the current simulation time. -- -- See also 'operationUtilisationFactorChanged' and 'operationUtilisationFactorChanged_'. operationUtilisationFactor :: MonadDES m => Operation m a b -> Event m Double {-# INLINABLE operationUtilisationFactor #-} operationUtilisationFactor op = Event $ \p -> do t0 <- invokeEvent p $ readRef (operationStartTimeRef op) t1 <- invokeEvent p $ readRef (operationLastTimeRef op) x <- invokeEvent p $ readRef (operationTotalUtilisationTimeRef op) return (x / (t1 - t0)) -- | Signal when the 'operationUtilisationFactor' property value has changed. operationUtilisationFactorChanged :: MonadDES m => Operation m a b -> Signal m Double {-# INLINABLE operationUtilisationFactorChanged #-} operationUtilisationFactorChanged op = mapSignalM (const $ operationUtilisationFactor op) (operationUtilisationFactorChanged_ op) -- | Signal when the 'operationUtilisationFactor' property value has changed. operationUtilisationFactorChanged_ :: MonadDES m => Operation m a b -> Signal m () {-# INLINABLE operationUtilisationFactorChanged_ #-} operationUtilisationFactorChanged_ op = mapSignal (const ()) (operationUtilised op) <> mapSignal (const ()) (operationPreemptionEnding op) -- | It returns the factor changing from 0 to 1, which estimates how often -- the operation activity was preempted waiting for the further proceeding -- since the time of creating the operation. -- -- The value returned changes discretely and it is usually delayed relative -- to the current simulation time. -- -- See also 'operationPreemptionFactorChanged' and 'operationPreemptionFactorChanged_'. operationPreemptionFactor :: MonadDES m => Operation m a b -> Event m Double {-# INLINABLE operationPreemptionFactor #-} operationPreemptionFactor op = Event $ \p -> do t0 <- invokeEvent p $ readRef (operationStartTimeRef op) t1 <- invokeEvent p $ readRef (operationLastTimeRef op) x <- invokeEvent p $ readRef (operationTotalPreemptionTimeRef op) return (x / (t1 - t0)) -- | Signal when the 'operationPreemptionFactor' property value has changed. operationPreemptionFactorChanged :: MonadDES m => Operation m a b -> Signal m Double {-# INLINABLE operationPreemptionFactorChanged #-} operationPreemptionFactorChanged op = mapSignalM (const $ operationPreemptionFactor op) (operationPreemptionFactorChanged_ op) -- | Signal when the 'operationPreemptionFactor' property value has changed. operationPreemptionFactorChanged_ :: MonadDES m => Operation m a b -> Signal m () {-# INLINABLE operationPreemptionFactorChanged_ #-} operationPreemptionFactorChanged_ op = mapSignal (const ()) (operationUtilised op) <> mapSignal (const ()) (operationPreemptionEnding op) -- | Raised when starting to utilise the operation activity after a new input task is received. operationUtilising :: MonadDES m => Operation m a b -> Signal m a {-# INLINABLE operationUtilising #-} operationUtilising = publishSignal . operationUtilisingSource -- | Raised when the operation activity has been utilised after the current task is processed. operationUtilised :: MonadDES m => Operation m a b -> Signal m (a, b) {-# INLINABLE operationUtilised #-} operationUtilised = publishSignal . operationUtilisedSource -- | Raised when the operation activity utilisation was preempted. operationPreemptionBeginning :: MonadDES m => Operation m a b -> Signal m a {-# INLINABLE operationPreemptionBeginning #-} operationPreemptionBeginning = publishSignal . operationPreemptionBeginningSource -- | Raised when the operation activity utilisation was proceeded after it had been preempted earlier. operationPreemptionEnding :: MonadDES m => Operation m a b -> Signal m a {-# INLINABLE operationPreemptionEnding #-} operationPreemptionEnding = publishSignal . operationPreemptionEndingSource -- | Signal whenever any property of the operation changes. operationChanged_ :: MonadDES m => Operation m a b -> Signal m () {-# INLINABLE operationChanged_ #-} operationChanged_ op = mapSignal (const ()) (operationUtilising op) <> mapSignal (const ()) (operationUtilised op) <> mapSignal (const ()) (operationPreemptionEnding op) -- | Return the summary for the operation with desciption of its -- properties using the specified indent. operationSummary :: MonadDES m => Operation m a b -> Int -> Event m ShowS {-# INLINABLE operationSummary #-} operationSummary op indent = Event $ \p -> do t0 <- invokeEvent p $ readRef (operationStartTimeRef op) t1 <- invokeEvent p $ readRef (operationLastTimeRef op) tx1 <- invokeEvent p $ readRef (operationTotalUtilisationTimeRef op) tx2 <- invokeEvent p $ readRef (operationTotalPreemptionTimeRef op) let xf1 = tx1 / (t1 - t0) xf2 = tx2 / (t1 - t0) xs1 <- invokeEvent p $ readRef (operationUtilisationTimeRef op) xs2 <- invokeEvent p $ readRef (operationPreemptionTimeRef op) let tab = replicate indent ' ' return $ showString tab . showString "total utilisation time = " . shows tx1 . showString "\n" . showString tab . showString "total preemption time = " . shows tx2 . showString "\n" . showString tab . showString "utilisation factor (from 0 to 1) = " . shows xf1 . showString "\n" . showString tab . showString "preemption factor (from 0 to 1) = " . shows xf2 . showString "\n" . showString tab . showString "utilisation time:\n\n" . samplingStatsSummary xs1 (2 + indent) . showString "\n\n" . showString tab . showString "preemption time:\n\n" . samplingStatsSummary xs2 (2 + indent) -- | Reset the statistics. resetOperation :: MonadDES m => Operation m a b -> Event m () {-# INLINABLE resetOperation #-} resetOperation op = do t0 <- liftDynamics time writeRef (operationStartTimeRef op) t0 writeRef (operationLastTimeRef op) t0 writeRef (operationTotalUtilisationTimeRef op) 0 writeRef (operationTotalPreemptionTimeRef op) 0 writeRef (operationUtilisationTimeRef op) emptySamplingStats writeRef (operationPreemptionTimeRef op) emptySamplingStats