-- | -- Module : Simulation.Aivika.Trans.Net -- Copyright : Copyright (c) 2009-2017, David Sorokin -- License : BSD3 -- Maintainer : David Sorokin -- Stability : experimental -- Tested with: GHC 8.0.1 -- -- The module defines a 'Net' arrow that can be applied to modeling the queue networks -- like the 'Processor' arrow from another module. Only the former has a more efficient -- implementation of the 'Arrow' interface than the latter, although at the cost of -- some decreasing in generality. -- -- While the @Processor@ type is just a function that transforms the input 'Stream' into another, -- the @Net@ type is actually an automaton that has an implementation very similar to that one -- which the 'Circuit' type has, only the computations occur in the 'Process' monad. But unlike -- the @Circuit@ type, the @Net@ type doesn't allow declaring recursive definitions, being based on -- continuations. -- -- In a nutshell, the @Net@ type is an interchangeable alternative to the @Processor@ type -- with its weaknesses and strengths. The @Net@ arrow is useful for constructing computations -- with help of the proc-notation to be transformed then to the @Processor@ computations that -- are more general in nature and more easy-to-use but which computations created with help of -- the proc-notation are not so efficient. -- module Simulation.Aivika.Trans.Net (-- * Net Arrow Net(..), iterateNet, iterateNetMaybe, iterateNetEither, -- * Net Primitives emptyNet, arrNet, accumNet, withinNet, -- * Specifying Identifier netUsingId, -- * Arrival Net arrivalNet, -- * Delaying Net delayNet, -- * Interchanging Nets with Processors netProcessor, processorNet, -- * Debugging traceNet) where import qualified Control.Category as C import Control.Arrow import Control.Monad.Trans import Simulation.Aivika.Trans.Ref.Base import Simulation.Aivika.Trans.DES import Simulation.Aivika.Trans.Parameter import Simulation.Aivika.Trans.Simulation import Simulation.Aivika.Trans.Dynamics import Simulation.Aivika.Trans.Event import Simulation.Aivika.Trans.Cont import Simulation.Aivika.Trans.Process import Simulation.Aivika.Trans.Stream import Simulation.Aivika.Trans.QueueStrategy import Simulation.Aivika.Trans.Resource.Base import Simulation.Aivika.Trans.Processor import Simulation.Aivika.Trans.Circuit import Simulation.Aivika.Arrival (Arrival(..)) -- | Represents the net as an automaton working within the 'Process' computation. newtype Net m a b = Net { runNet :: a -> Process m (b, Net m a b) -- ^ Run the net. } instance MonadDES m => C.Category (Net m) where {-# INLINABLE id #-} id = Net $ \a -> return (a, C.id) {-# INLINABLE (.) #-} (.) = dot where (Net g) `dot` (Net f) = Net $ \a -> do (b, p1) <- f a (c, p2) <- g b return (c, p2 `dot` p1) instance MonadDES m => Arrow (Net m) where {-# INLINABLE arr #-} arr f = Net $ \a -> return (f a, arr f) {-# INLINABLE first #-} first (Net f) = Net $ \(b, d) -> do (c, p) <- f b return ((c, d), first p) {-# INLINABLE second #-} second (Net f) = Net $ \(d, b) -> do (c, p) <- f b return ((d, c), second p) {-# INLINABLE (***) #-} (Net f) *** (Net g) = Net $ \(b, b') -> do ((c, p1), (c', p2)) <- zipProcessParallel (f b) (g b') return ((c, c'), p1 *** p2) {-# INLINABLE (&&&) #-} (Net f) &&& (Net g) = Net $ \b -> do ((c, p1), (c', p2)) <- zipProcessParallel (f b) (g b) return ((c, c'), p1 &&& p2) instance MonadDES m => ArrowChoice (Net m) where {-# INLINABLE left #-} left x@(Net f) = Net $ \ebd -> case ebd of Left b -> do (c, p) <- f b return (Left c, left p) Right d -> return (Right d, left x) {-# INLINABLE right #-} right x@(Net f) = Net $ \edb -> case edb of Right b -> do (c, p) <- f b return (Right c, right p) Left d -> return (Left d, right x) {-# INLINABLE (+++) #-} x@(Net f) +++ y@(Net g) = Net $ \ebb' -> case ebb' of Left b -> do (c, p1) <- f b return (Left c, p1 +++ y) Right b' -> do (c', p2) <- g b' return (Right c', x +++ p2) {-# INLINABLE (|||) #-} x@(Net f) ||| y@(Net g) = Net $ \ebc -> case ebc of Left b -> do (d, p1) <- f b return (d, p1 ||| y) Right b' -> do (d, p2) <- g b' return (d, x ||| p2) -- | A net that never finishes its work. emptyNet :: MonadDES m => Net m a b {-# INLINABLE emptyNet #-} emptyNet = Net $ const neverProcess -- | Create a simple net by the specified handling function -- that runs the discontinuous process for each input value to get an output. arrNet :: MonadDES m => (a -> Process m b) -> Net m a b {-# INLINABLE arrNet #-} arrNet f = let x = Net $ \a -> do b <- f a return (b, x) in x -- | Accumulator that outputs a value determined by the supplied function. accumNet :: MonadDES m => (acc -> a -> Process m (acc, b)) -> acc -> Net m a b {-# INLINABLE accumNet #-} accumNet f acc = Net $ \a -> do (acc', b) <- f acc a return (b, accumNet f acc') -- | Involve the computation with side effect when processing the input. withinNet :: MonadDES m => Process m () -> Net m a a {-# INLINABLE withinNet #-} withinNet m = Net $ \a -> do { m; return (a, withinNet m) } -- | Create a net that will use the specified process identifier. -- It can be useful to refer to the underlying 'Process' computation which -- can be passivated, interrupted, canceled and so on. See also the -- 'processUsingId' function for more details. netUsingId :: MonadDES m => ProcessId m -> Net m a b -> Net m a b {-# INLINABLE netUsingId #-} netUsingId pid (Net f) = Net $ processUsingId pid . f -- | Transform the net to an equivalent processor (a rather cheap transformation). netProcessor :: MonadDES m => Net m a b -> Processor m a b {-# INLINABLE netProcessor #-} netProcessor = Processor . loop where loop x as = Cons $ do (a, as') <- runStream as (b, x') <- runNet x a return (b, loop x' as') -- | Transform the processor to a similar net (a more costly transformation). processorNet :: MonadDES m => Processor m a b -> Net m a b {-# INLINABLE processorNet #-} processorNet x = Net $ \a -> do readingA <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1) writingA <- liftSimulation $ newResourceWithMaxCount FCFS 1 (Just 1) readingB <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1) writingB <- liftSimulation $ newResourceWithMaxCount FCFS 1 (Just 1) conting <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1) refA <- liftSimulation $ newRef Nothing refB <- liftSimulation $ newRef Nothing let input = do requestResource readingA Just a <- liftEvent $ readRef refA liftEvent $ writeRef refA Nothing releaseResource writingA return (a, Cons input) consume bs = do (b, bs') <- runStream bs requestResource writingB liftEvent $ writeRef refB (Just b) releaseResource readingB requestResource conting consume bs' loop a = do requestResource writingA liftEvent $ writeRef refA (Just a) releaseResource readingA requestResource readingB Just b <- liftEvent $ readRef refB liftEvent $ writeRef refB Nothing releaseResource writingB return (b, Net $ \a -> releaseResource conting >> loop a) spawnProcess $ consume $ runProcessor x (Cons input) loop a -- | A net that adds the information about the time points at which -- the values were received. arrivalNet :: MonadDES m => Net m a (Arrival a) {-# INLINABLE arrivalNet #-} arrivalNet = let loop t0 = Net $ \a -> do t <- liftDynamics time let b = Arrival { arrivalValue = a, arrivalTime = t, arrivalDelay = case t0 of Nothing -> Nothing Just t0 -> Just (t - t0) } return (b, loop $ Just t) in loop Nothing -- | Delay the input by one step using the specified initial value. delayNet :: MonadDES m => a -> Net m a a {-# INLINABLE delayNet #-} delayNet a0 = Net $ \a -> return (a0, delayNet a) -- | Iterate infinitely using the specified initial value. iterateNet :: MonadDES m => Net m a a -> a -> Process m () {-# INLINABLE iterateNet #-} iterateNet (Net f) a = do (a', x) <- f a iterateNet x a' -- | Iterate the net using the specified initial value -- until 'Nothing' is returned within the 'Net' computation. iterateNetMaybe :: MonadDES m => Net m a (Maybe a) -> a -> Process m () {-# INLINABLE iterateNetMaybe #-} iterateNetMaybe (Net f) a = do (a', x) <- f a case a' of Nothing -> return () Just a' -> iterateNetMaybe x a' -- | Iterate the net using the specified initial value -- until the 'Left' result is returned within the 'Net' computation. iterateNetEither :: MonadDES m => Net m a (Either b a) -> a -> Process m b {-# INLINABLE iterateNetEither #-} iterateNetEither (Net f) a = do (ba', x) <- f a case ba' of Left b' -> return b' Right a' -> iterateNetEither x a' -- | Show the debug messages with the current simulation time. traceNet :: MonadDES m => Maybe String -- ^ the request message -> Maybe String -- ^ the response message -> Net m a b -- ^ a net -> Net m a b {-# INLINABLE traceNet #-} traceNet request response x = Net $ loop x where loop x a = do (b, x') <- case request of Nothing -> runNet x a Just message -> traceProcess message $ runNet x a case response of Nothing -> return (b, Net $ loop x') Just message -> traceProcess message $ return (b, Net $ loop x')