{-# OPTIONS_JHC -fm4 -fno-prelude -fffi #-} module Data.Bits where import Jhc.Num import Jhc.Order import Jhc.Basics import Jhc.Type.C m4_include(Data/Bits.m4) infixl 8 `shift`, `rotate`, `shiftL`, `shiftR`, `rotateL`, `rotateR` infixl 7 .&. infixl 6 `xor` infixl 5 .|. {-| The 'Bits' class defines bitwise operations over integral types. * Bits are numbered from 0 with bit 0 being the least significant bit. -} class Num a => Bits a where -- | Bitwise \"and\" (.&.) :: a -> a -> a -- | Bitwise \"or\" (.|.) :: a -> a -> a -- | Bitwise \"xor\" xor :: a -> a -> a {-| Reverse all the bits in the argument -} complement :: a -> a {-| Shift the argument left by the specified number of bits. Right shifts (signed) are specified by giving a negative value. An instance can define either this unified 'shift' or 'shiftL' and 'shiftR', depending on which is more convenient for the type in question. -} shift :: a -> Int -> a x `shift` i | i<0 = x `shiftR` (-i) | i==0 = x | i>0 = x `shiftL` i {-| Rotate the argument left by the specified number of bits. Right rotates are specified by giving a negative value. For unbounded types like 'Integer', 'rotate' is equivalent to 'shift'. An instance can define either this unified 'rotate' or 'rotateL' and 'rotateR', depending on which is more convenient for the type in question. -} rotate :: a -> Int -> a x `rotate` i | i<0 = x `rotateR` (-i) | i==0 = x | i>0 = x `rotateL` i {- -- Rotation can be implemented in terms of two shifts, but care is -- needed for negative values. This suggested implementation assumes -- 2's-complement arithmetic. It is commented out because it would -- require an extra context (Ord a) on the signature of 'rotate'. x `rotate` i | i<0 && isSigned x && x<0 = let left = i+bitSize x in ((x `shift` i) .&. complement ((-1) `shift` left)) .|. (x `shift` left) | i<0 = (x `shift` i) .|. (x `shift` (i+bitSize x)) | i==0 = x | i>0 = (x `shift` i) .|. (x `shift` (i-bitSize x)) -} -- | @bit i@ is a value with the @i@th bit set bit :: Int -> a -- | @x \`setBit\` i@ is the same as @x .|. bit i@ setBit :: a -> Int -> a -- | @x \`clearBit\` i@ is the same as @x .&. complement (bit i)@ clearBit :: a -> Int -> a -- | @x \`complementBit\` i@ is the same as @x \`xor\` bit i@ complementBit :: a -> Int -> a -- | Return 'True' if the @n@th bit of the argument is 1 testBit :: a -> Int -> Bool {-| Return the number of bits in the type of the argument. The actual value of the argument is ignored. The function 'bitSize' is undefined for types that do not have a fixed bitsize, like 'Integer'. -} bitSize :: a -> Int {-| Return 'True' if the argument is a signed type. The actual value of the argument is ignored -} isSigned :: a -> Bool bit i = 1 `shiftL` i x `setBit` i = x .|. bit i x `clearBit` i = x .&. complement (bit i) x `complementBit` i = x `xor` bit i x `testBit` i = (x .&. bit i) /= 0 {-| Shift the argument left by the specified number of bits (which must be non-negative). An instance can define either this and 'shiftR' or the unified 'shift', depending on which is more convenient for the type in question. -} shiftL :: a -> Int -> a x `shiftL` i = x `shift` i {-| Shift the argument right (signed) by the specified number of bits (which must be non-negative). An instance can define either this and 'shiftL' or the unified 'shift', depending on which is more convenient for the type in question. -} shiftR :: a -> Int -> a x `shiftR` i = x `shift` (-i) {-| Rotate the argument left by the specified number of bits (which must be non-negative). An instance can define either this and 'rotateR' or the unified 'rotate', depending on which is more convenient for the type in question. -} rotateL :: a -> Int -> a x `rotateL` i = x `rotate` i {-| Rotate the argument right by the specified number of bits (which must be non-negative). An instance can define either this and 'rotateL' or the unified 'rotate', depending on which is more convenient for the type in question. -} rotateR :: a -> Int -> a x `rotateR` i = x `rotate` (-i) BITSINST(Int,a) BITSINST(Int8,a) BITSINST(Int16,a) BITSINST(Int32,a) BITSINST(Int64,a) BITSINST(IntPtr,a) BITSINST(IntMax,a) BITSINST(Integer,a) BITSINST(Word) BITSINST(Word8) BITSINST(Word16) BITSINST(Word32) BITSINST(Word64) BITSINST(WordPtr) BITSINST(WordMax) BITSINST(CChar,a) BITSINST(CInt,a) BITSINST(CLLong,a) BITSINST(CLong,a) BITSINST(CSChar,a) BITSINST(CSize,a) BITSINST(CUChar,a) BITSINST(CUInt,a) BITSINST(CULLong,a) BITSINST(CULong,a) BITSINST(CWchar,a)