{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, TypeFamilies, UndecidableInstances, DeriveDataTypeable #-}
module Numeric.Algebra.Dual
  ( Distinguished(..)
  , Infinitesimal(..)
  , DualBasis(..)
  , Dual(..)
  ) where

import Control.Applicative
import Control.Monad.Reader.Class
import Data.Data
import Data.Distributive
import Data.Functor.Bind
import Data.Functor.Representable
import Data.Functor.Representable.Trie
import Data.Foldable
import Data.Ix
import Data.Key hiding (Dual)
import Data.Monoid hiding (Dual)
import Data.Semigroup.Traversable
import Data.Semigroup.Foldable
import Data.Traversable
import Numeric.Algebra
import Numeric.Algebra.Distinguished.Class
import Numeric.Algebra.Dual.Class
import Prelude hiding ((-),(+),(*),negate,subtract, fromInteger,recip)

-- | dual number basis, D^2 = 0. D /= 0.
data DualBasis = E | D deriving (Eq,Ord,Show,Read,Enum,Ix,Bounded,Data,Typeable)
data Dual a = Dual a a deriving (Eq,Show,Read,Data,Typeable)

instance Distinguished DualBasis where
  e = E

instance Infinitesimal DualBasis where
  d = D

instance Rig r => Distinguished (Dual r) where
  e = Dual one zero

instance Rig r => Infinitesimal (Dual r) where
  d = Dual zero one
  
instance Rig r => Distinguished (DualBasis -> r) where
  e E = one
  e _ = zero

instance Rig r => Infinitesimal (DualBasis -> r) where
  d D = one
  d _       = zero 

type instance Key Dual = DualBasis

instance Representable Dual where
  tabulate f = Dual (f E) (f D)

instance Indexable Dual where
  index (Dual a _ ) E = a
  index (Dual _ b ) D = b

instance Lookup Dual where
  lookup = lookupDefault

instance Adjustable Dual where
  adjust f E (Dual a b) = Dual (f a) b
  adjust f D (Dual a b) = Dual a (f b)

instance Distributive Dual where
  distribute = distributeRep 

instance Functor Dual where
  fmap f (Dual a b) = Dual (f a) (f b)

instance Zip Dual where
  zipWith f (Dual a1 b1) (Dual a2 b2) = Dual (f a1 a2) (f b1 b2)

instance ZipWithKey Dual where
  zipWithKey f (Dual a1 b1) (Dual a2 b2) = Dual (f E a1 a2) (f D b1 b2)

instance Keyed Dual where
  mapWithKey = mapWithKeyRep

instance Apply Dual where
  (<.>) = apRep

instance Applicative Dual where
  pure = pureRep
  (<*>) = apRep 

instance Bind Dual where
  (>>-) = bindRep

instance Monad Dual where
  return = pureRep
  (>>=) = bindRep

instance MonadReader DualBasis Dual where
  ask = askRep
  local = localRep

instance Foldable Dual where
  foldMap f (Dual a b) = f a `mappend` f b

instance FoldableWithKey Dual where
  foldMapWithKey f (Dual a b) = f E a `mappend` f D b

instance Traversable Dual where
  traverse f (Dual a b) = Dual <$> f a <*> f b

instance TraversableWithKey Dual where
  traverseWithKey f (Dual a b) = Dual <$> f E a <*> f D b

instance Foldable1 Dual where
  foldMap1 f (Dual a b) = f a <> f b

instance FoldableWithKey1 Dual where
  foldMapWithKey1 f (Dual a b) = f E a <> f D b

instance Traversable1 Dual where
  traverse1 f (Dual a b) = Dual <$> f a <.> f b

instance TraversableWithKey1 Dual where
  traverseWithKey1 f (Dual a b) = Dual <$> f E a <.> f D b

instance HasTrie DualBasis where
  type BaseTrie DualBasis = Dual
  embedKey = id
  projectKey = id

instance Additive r => Additive (Dual r) where
  (+) = addRep 
  replicate1p = replicate1pRep

instance LeftModule r s => LeftModule r (Dual s) where
  r .* Dual a b = Dual (r .* a) (r .* b)

instance RightModule r s => RightModule r (Dual s) where
  Dual a b *. r = Dual (a *. r) (b *. r)

instance Monoidal r => Monoidal (Dual r) where
  zero = zeroRep
  replicate = replicateRep

instance Group r => Group (Dual r) where
  (-) = minusRep
  negate = negateRep
  subtract = subtractRep
  times = timesRep

instance Abelian r => Abelian (Dual r)

instance Idempotent r => Idempotent (Dual r)

instance Partitionable r => Partitionable (Dual r) where
  partitionWith f (Dual a b) = id =<<
    partitionWith (\a1 a2 -> 
    partitionWith (\b1 b2 -> f (Dual a1 b1) (Dual a2 b2)) b) a

instance Rng k => Algebra k DualBasis where
  mult f = f' where
    fe = f E E
    fd = f E D + f D E
    f' E = fe
    f' D = fd

instance Rng k => UnitalAlgebra k DualBasis where
  unit x E = x
  unit _ _ = zero

-- the trivial coalgebra
instance Rng k => Coalgebra k DualBasis where
  comult f E E = f E
  comult f D D = f D
  comult _ _ _ = zero

instance Rng k => CounitalCoalgebra k DualBasis where
  counit f = f E + f D

instance Rng k => Bialgebra k DualBasis 

instance (InvolutiveSemiring k, Rng k) => InvolutiveAlgebra k DualBasis where
  inv f = f' where
    afe = adjoint (f E)
    nfd = negate (f D)
    f' E = afe
    f' D = nfd

instance (InvolutiveSemiring k, Rng k) => InvolutiveCoalgebra k DualBasis where
  coinv = inv

instance (InvolutiveSemiring k, Rng k) => HopfAlgebra k DualBasis where
  antipode = inv

instance (Commutative r, Rng r) => Multiplicative (Dual r) where
  (*) = mulRep

instance (TriviallyInvolutive r, Rng r) => Commutative (Dual r)

instance (Commutative r, Rng r) => Semiring (Dual r)

instance (Commutative r, Ring r) => Unital (Dual r) where
  one = oneRep

instance (Commutative r, Ring r) => Rig (Dual r) where
  fromNatural n = Dual (fromNatural n) zero

instance (Commutative r, Ring r) => Ring (Dual r) where
  fromInteger n = Dual (fromInteger n) zero

instance (Commutative r, Rng r) => LeftModule (Dual r) (Dual r) where (.*) = (*)
instance (Commutative r, Rng r) => RightModule (Dual r) (Dual r) where (*.) = (*)

instance (Commutative r, Rng r, InvolutiveSemiring r) => InvolutiveMultiplication (Dual r) where
  adjoint (Dual a b) = Dual (adjoint a) (negate b)

instance (Commutative r, Rng r, InvolutiveSemiring r) => InvolutiveSemiring (Dual r)

instance (Commutative r, Rng r, InvolutiveSemiring r) => Quadrance r (Dual r) where
  quadrance n = case adjoint n * n of
    Dual a _ -> a

instance (Commutative r, InvolutiveSemiring r, DivisionRing r) => Division (Dual r) where
  recip q@(Dual a b) = Dual (qq \\ a) (qq \\ b)
    where qq = quadrance q