algebra-2.0: Constructive abstract algebra

Numeric.Module.Representable

Contents

Synopsis

Representable Additive

addRep :: (Zip m, Additive r) => m r -> m r -> m rSource

`Additive.(+)` default definition

sinnum1pRep :: (Whole n, Functor m, Additive r) => n -> m r -> m rSource

Additive.sinnum1p default definition

Representable Monoidal

zeroRep :: (Applicative m, Monoidal r) => m rSource

Monoidal.zero default definition

sinnumRep :: (Whole n, Functor m, Monoidal r) => n -> m r -> m rSource

Monoidal.sinnum default definition

Representable Group

negateRep :: (Functor m, Group r) => m r -> m rSource

Group.negate default definition

minusRep :: (Zip m, Group r) => m r -> m r -> m rSource

`Group.(-)` default definition

subtractRep :: (Zip m, Group r) => m r -> m r -> m rSource

Group.subtract default definition

timesRep :: (Integral n, Functor m, Group r) => n -> m r -> m rSource

Group.times default definition

Representable Multiplicative (via Algebra)

mulRep :: (Representable m, Algebra r (Key m)) => m r -> m r -> m rSource

`Multiplicative.(*)` default definition

Representable Unital (via UnitalAlgebra)

oneRep :: (Representable m, Unital r, UnitalAlgebra r (Key m)) => m rSource

Unital.one default definition

Representable Rig (via Algebra)

fromNaturalRep :: (UnitalAlgebra r (Key m), Representable m, Rig r) => Natural -> m rSource

Rig.fromNatural default definition

Representable Ring (via Algebra)

fromIntegerRep :: (UnitalAlgebra r (Key m), Representable m, Ring r) => Integer -> m rSource

Ring.fromInteger default definition