- addRep :: (Zip m, Additive r) => m r -> m r -> m r
- sinnum1pRep :: (Whole n, Functor m, Additive r) => n -> m r -> m r
- zeroRep :: (Applicative m, Monoidal r) => m r
- sinnumRep :: (Whole n, Functor m, Monoidal r) => n -> m r -> m r
- negateRep :: (Functor m, Group r) => m r -> m r
- minusRep :: (Zip m, Group r) => m r -> m r -> m r
- subtractRep :: (Zip m, Group r) => m r -> m r -> m r
- timesRep :: (Integral n, Functor m, Group r) => n -> m r -> m r
- mulRep :: (Representable m, Algebra r (Key m)) => m r -> m r -> m r
- oneRep :: (Representable m, Unital r, UnitalAlgebra r (Key m)) => m r
- fromNaturalRep :: (UnitalAlgebra r (Key m), Representable m, Rig r) => Natural -> m r
- fromIntegerRep :: (UnitalAlgebra r (Key m), Representable m, Ring r) => Integer -> m r
Representable Additive
sinnum1pRep :: (Whole n, Functor m, Additive r) => n -> m r -> m rSource
Additive.sinnum1p
default definition
Representable Monoidal
zeroRep :: (Applicative m, Monoidal r) => m rSource
Monoidal.zero
default definition
sinnumRep :: (Whole n, Functor m, Monoidal r) => n -> m r -> m rSource
Monoidal.sinnum
default definition
Representable Group
subtractRep :: (Zip m, Group r) => m r -> m r -> m rSource
Group.subtract
default definition
Representable Multiplicative (via Algebra)
mulRep :: (Representable m, Algebra r (Key m)) => m r -> m r -> m rSource
`Multiplicative.(*)` default definition
Representable Unital (via UnitalAlgebra)
oneRep :: (Representable m, Unital r, UnitalAlgebra r (Key m)) => m rSource
Unital.one
default definition
Representable Rig (via Algebra)
fromNaturalRep :: (UnitalAlgebra r (Key m), Representable m, Rig r) => Natural -> m rSource
Rig.fromNatural
default definition
Representable Ring (via Algebra)
fromIntegerRep :: (UnitalAlgebra r (Key m), Representable m, Ring r) => Integer -> m rSource
Ring.fromInteger
default definition