{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, TypeFamilies #-}
module Numeric.Map
  ( Map(..)
  , ($@)
  , multMap
  , unitMap
  , memoMap
  , comultMap
  , counitMap
  , invMap
  , coinvMap
  , antipodeMap
  , convolveMap
  ) where

import Control.Applicative
import Control.Arrow
import Control.Categorical.Bifunctor
import Control.Category
import Control.Category.Associative
import Control.Category.Braided
import Control.Category.Cartesian
import Control.Category.Cartesian.Closed
import Control.Category.Distributive
import qualified Control.Category.Monoidal as C
import Control.Category.Monoidal (Id)
import Control.Monad
import Control.Monad.Reader.Class
import Data.Key
import Data.Functor.Representable
import Data.Functor.Representable.Trie
import Data.Functor.Bind
import Data.Functor.Plus hiding (zero)
import qualified Data.Functor.Plus as Plus
import Data.Semigroupoid
import Data.Void
import Numeric.Algebra
import Prelude hiding ((*), (+), negate, subtract,(-), recip, (/), foldr, sum, product, replicate, concat, (.), id, curry, uncurry, fst, snd)

-- | linear maps from elements of a free module to another free module over r
--
-- > f $# x + y = (f $# x) + (f $# y)
-- > f $# (r .* x) = r .* (f $# x)
--
--
-- @Map r b a@ represents a linear mapping from a free module with basis @a@ over @r@ to a free module with basis @b@ over @r@.
--
-- Note well the reversed direction of the arrow, due to the contravariance of change of basis!
--
-- This way enables we can employ arbitrary pure functions as linear maps by lifting them using `arr`, or build them
-- by using the monad instance for Map r b.  As a consequence Map is an instance of, well, almost everything.

infixr 0 $#
newtype Map r b a = Map ((a -> r) -> b -> r)

($#) :: (Indexable v, Representable w) => Map r (Key w) (Key v) -> v r -> w r
($#) (Map m) = tabulate . m . index

infixr 0 $@
-- | extract a linear functional from a linear map
($@) :: Map r b a -> b -> Covector r a
m $@ b = Covector $ \k -> (m $# k) b

-- NB: due to contravariance (>>>) to get the usual notion of composition!
instance Category (Map r) where
  id = Map id
  Map f . Map g = Map (g . f)

instance Semigroupoid (Map r) where
  Map f `o` Map g = Map (g . f)

instance Functor (Map r b) where
  fmap f m = Map $ \k -> m $# k . f

instance Apply (Map r b) where
  mf <.> ma = Map $ \k b -> (mf $# \f -> (ma $# k . f) b) b

instance Applicative (Map r b) where
  pure a = Map $ \k _ -> k a
  mf <*> ma = Map $ \k b -> (mf $# \f -> (ma $# k . f) b) b

instance Bind (Map r b) where
  Map m >>- f = Map $ \k b -> m (\a -> (f a $# k) b) b

instance Monad (Map r b) where
  return a = Map $ \k _ -> k a
  m >>= f = Map $ \k b -> (m $# \a -> (f a $# k) b) b

instance PFunctor (,) (Map r) (Map r)
instance QFunctor (,) (Map r) (Map r)
instance Bifunctor (,) (Map r) (Map r) (Map r) where
  bimap m n = Map $ \k (a,c) -> (m $# \b -> (n $# \d -> k (b,d)) c) a

instance Associative (Map r) (,) where
  associate = arr associate
  disassociate = arr disassociate

instance Braided (Map r) (,) where
  braid = arr braid

instance Symmetric (Map r) (,)

instance C.Monoidal (Map r) (,) where
  type Id (Map r) (,) = ()
  idl = arr C.idl
  idr = arr C.idr
  coidl = arr C.coidl
  coidr = arr C.coidr

instance Cartesian (Map r) where
  type Product (Map r) = (,)
  fst = arr fst
  snd = arr snd
  diag = arr diag
  f &&& g = Map $ \k a -> (f $# \b -> (g $# \c -> k (b,c)) a) a

instance CCC (Map r) where
  type Exp (Map r) = Map r
  apply = Map $ \k (f,a) -> (f $# k) a
  curry m = Map $ \k a -> k (Map $ \k' b -> (m $# k') (a, b))
  uncurry m = Map $ \k (a, b) -> (m $# (\m' -> (m' $# k) b)) a

instance Distributive (Map r) where
  distribute = Map $ \k (a,p) -> k $ bimap ((,) a) ((,)a) p

instance PFunctor Either (Map r) (Map r)
instance QFunctor Either (Map r) (Map r)
instance Bifunctor Either (Map r) (Map r) (Map r) where
  bimap m n = Map $ \k -> either (m $# k . Left) (n $# k . Right)

instance Associative (Map r) Either where
  associate = arr associate
  disassociate = arr disassociate

instance Braided (Map r) Either where
  braid = arr braid

instance Symmetric (Map r) Either

instance CoCartesian (Map r) where
  type Sum (Map r) = Either
  inl = arr inl
  inr = arr inr
  codiag = arr codiag
  m ||| n = Map $ \k -> either (m $# k) (n $# k)

instance C.Monoidal (Map r) Either where
  type Id (Map r) Either = Void
  idl = arr C.idl
  idr = arr C.idr
  coidl = arr C.coidl
  coidr = arr C.coidr

instance Arrow (Map r) where
  arr f = Map (. f)
  first m = Map $ \k (a,c) -> (m $# \b -> k (b,c)) a
  second m = Map $ \k (c,a) -> (m $# \b -> k (c,b)) a
  m *** n = Map $ \k (a,c) -> (m $# \b -> (n $# \d -> k (b,d)) c) a
  m &&& n = Map $ \k a -> (m $# \b -> (n $# \c -> k (b,c)) a) a

instance ArrowApply (Map r) where
  app = Map $ \k (f,a) -> (f $# k) a

instance MonadReader b (Map r b) where
  ask = id
  local f m = Map $ \k -> (m $# k) . f

-- While the following typechecks, it isn't correct,
-- callCC is non-linear, the internal Map ignores the functional it is given!
--
--instance MonadCont (Map r b) where
--  callCC f = Map $ \k -> (f $# \a -> Map $ \_ _ -> k a) k

-- label :: ((a -> r) -> Map r b a) -> Map r b a
-- label f = Map $ \k -> f k $# k

-- break :: (a -> r) -> a -> Map r b a

instance Monoidal r => ArrowZero (Map r) where
  zeroArrow = Map zero

instance Monoidal r => ArrowPlus (Map r) where
  Map m <+> Map n = Map $ m + n

instance ArrowChoice (Map r) where
  left m = Map $ \k -> either (m $# k . Left) (k . Right)
  right m = Map $ \k -> either (k . Left) (m $# k . Right)
  m +++ n =  Map $ \k -> either (m $# k . Left) (n $# k . Right)
  m ||| n = Map $ \k -> either (m $# k) (n $# k)

-- TODO: ArrowLoop?

-- TODO: more categories instances for (Map r) & Either to get to precocartesian!

instance Additive r => Additive (Map r b a) where
  Map m + Map n = Map $ m + n
  sinnum1p n (Map m) = Map $ sinnum1p n m

instance Coalgebra r m => Multiplicative (Map r b m) where
  f * g = Map $ \k b -> (f $# \a -> (g $# comult k a) b) b
instance CounitalCoalgebra r m => Unital (Map r b m) where
  one = Map $ \k _ -> counit k

instance Coalgebra r m => Semiring (Map r b m)

instance Coalgebra r m => LeftModule (Map r b m) (Map r b m) where
  (.*) = (*)

instance LeftModule r s => LeftModule r (Map s b m) where
  s .* Map m = Map $ \k b -> s .* m k b

instance Coalgebra r m => RightModule (Map r b m) (Map r b m) where (*.) = (*)
instance RightModule r s => RightModule r (Map s b m) where
  Map m *. s = Map $ \k b -> m k b *. s

instance Additive r => Alt (Map r b) where
  Map m <!> Map n = Map $ m + n

instance Monoidal r => Plus (Map r b) where
  zero = Map zero

instance Monoidal r => Alternative (Map r b) where
  Map m <|> Map n = Map $ m + n
  empty = Map zero

instance Monoidal r => MonadPlus (Map r b) where
  Map m `mplus` Map n = Map $ m + n
  mzero = Map zero

instance Monoidal s => Monoidal (Map s b a) where
  zero = Map zero
  sinnum n (Map m) = Map $ sinnum n m

instance Abelian s => Abelian (Map s b a)

instance Group s => Group (Map s b a) where
  Map m - Map n = Map $ m - n
  negate (Map m) = Map $ negate m
  subtract (Map m) (Map n) = Map $ subtract m n
  times n (Map m) = Map $ times n m

instance (Commutative m, Coalgebra r m) => Commutative (Map r b m)

instance (Rig r, CounitalCoalgebra r m) => Rig (Map r b m)

instance (Ring r, CounitalCoalgebra r m) => Ring (Map r a m)

-- | (inefficiently) combine a linear combination of basis vectors to make a map.
-- arrMap :: (Monoidal r, Semiring r) => (b -> [(r, a)]) -> Map r b a
-- arrMap f = Map $ \k b -> sum [ r * k a | (r, a) <- f b ]

-- | Memoize the results of this linear map
memoMap :: HasTrie a => Map r a a
memoMap = Map memo

comultMap :: Algebra r a => Map r a (a,a)
comultMap = Map $ mult . curry

multMap :: Coalgebra r c => Map r (c,c) c
multMap = Map $ uncurry . comult

counitMap :: UnitalAlgebra r a => Map r a ()
counitMap = Map $ \k -> unit $ k ()

unitMap :: CounitalCoalgebra r c => Map r () c
unitMap = Map $ \k () -> counit k

-- | convolution given an associative algebra and coassociative coalgebra
convolveMap :: (Algebra r a, Coalgebra r c) => Map r a c -> Map r a c -> Map r a c
convolveMap f g = multMap . (f *** g) . comultMap

-- convolveMap antipodeMap id = convolveMap id antipodeMap = unit . counit
antipodeMap :: HopfAlgebra r h => Map r h h
antipodeMap = Map antipode

coinvMap :: InvolutiveAlgebra r a => Map r a a
coinvMap = Map inv

invMap :: InvolutiveCoalgebra r c => Map r c c
invMap = Map coinv

{-
-- ring homomorphism from r -> r^a
embedMap :: (Unital m, CounitalCoalgebra r m) => (b -> r) -> Map r b m
embedMap f = Map $ \k b -> f b * k one

-- if the characteristic of s does not divide the order of a, then s[a] is semisimple
-- and if a has a length function, we can build a filtered algebra

-- | The augmentation ring homomorphism from r^a -> r
augmentMap :: Unital s => Map s b m -> b -> s
augmentMap m = m $# const one
-}