{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, TypeFamilies #-} module Numeric.Map ( Map(..) , ($@) , multMap , unitMap , comultMap , counitMap , invMap , coinvMap , antipodeMap , convolveMap ) where import Control.Applicative import Control.Arrow import Control.Category import Control.Monad import Control.Monad.Reader.Class import Data.Functor.Rep import Data.Functor.Bind import Data.Functor.Plus hiding (zero) import qualified Data.Functor.Plus as Plus import Data.Semigroupoid import Numeric.Algebra import Prelude hiding ((*), (+), negate, subtract,(-), recip, (/), foldr, sum, product, replicate, concat, (.), id, fst, snd) -- | linear maps from elements of a free module to another free module over r -- -- > f $# x + y = (f $# x) + (f $# y) -- > f $# (r .* x) = r .* (f $# x) -- -- -- @Map r b a@ represents a linear mapping from a free module with basis @a@ over @r@ to a free module with basis @b@ over @r@. -- -- Note well the reversed direction of the arrow, due to the contravariance of change of basis! -- -- This way enables we can employ arbitrary pure functions as linear maps by lifting them using `arr`, or build them -- by using the monad instance for Map r b. As a consequence Map is an instance of, well, almost everything. infixr 0 $# newtype Map r b a = Map ((a -> r) -> b -> r) ($#) :: (Representable v, Representable w) => Map r (Rep w) (Rep v) -> v r -> w r ($#) (Map m) = tabulate . m . index infixr 0 $@ -- | extract a linear functional from a linear map ($@) :: Map r b a -> b -> Covector r a m $@ b = Covector $ \k -> (m $# k) b -- NB: due to contravariance (>>>) to get the usual notion of composition! instance Category (Map r) where id = Map id Map f . Map g = Map (g . f) instance Semigroupoid (Map r) where Map f `o` Map g = Map (g . f) instance Functor (Map r b) where fmap f m = Map $ \k -> m $# k . f instance Apply (Map r b) where mf <.> ma = Map $ \k b -> (mf $# \f -> (ma $# k . f) b) b instance Applicative (Map r b) where pure a = Map $ \k _ -> k a mf <*> ma = Map $ \k b -> (mf $# \f -> (ma $# k . f) b) b instance Bind (Map r b) where Map m >>- f = Map $ \k b -> m (\a -> (f a $# k) b) b instance Monad (Map r b) where return a = Map $ \k _ -> k a m >>= f = Map $ \k b -> (m $# \a -> (f a $# k) b) b instance Arrow (Map r) where arr f = Map (. f) first m = Map $ \k (a,c) -> (m $# \b -> k (b,c)) a second m = Map $ \k (c,a) -> (m $# \b -> k (c,b)) a m *** n = Map $ \k (a,c) -> (m $# \b -> (n $# \d -> k (b,d)) c) a m &&& n = Map $ \k a -> (m $# \b -> (n $# \c -> k (b,c)) a) a instance ArrowApply (Map r) where app = Map $ \k (f,a) -> (f $# k) a instance MonadReader b (Map r b) where ask = id local f m = Map $ \k -> (m $# k) . f -- While the following typechecks, it isn't correct, -- callCC is non-linear, the internal Map ignores the functional it is given! -- --instance MonadCont (Map r b) where -- callCC f = Map $ \k -> (f $# \a -> Map $ \_ _ -> k a) k -- label :: ((a -> r) -> Map r b a) -> Map r b a -- label f = Map $ \k -> f k $# k -- break :: (a -> r) -> a -> Map r b a instance Monoidal r => ArrowZero (Map r) where zeroArrow = Map zero instance Monoidal r => ArrowPlus (Map r) where Map m <+> Map n = Map $ m + n instance ArrowChoice (Map r) where left m = Map $ \k -> either (m $# k . Left) (k . Right) right m = Map $ \k -> either (k . Left) (m $# k . Right) m +++ n = Map $ \k -> either (m $# k . Left) (n $# k . Right) m ||| n = Map $ \k -> either (m $# k) (n $# k) -- TODO: ArrowLoop? -- TODO: more categories instances for (Map r) & Either to get to precocartesian! instance Additive r => Additive (Map r b a) where Map m + Map n = Map $ m + n sinnum1p n (Map m) = Map $ sinnum1p n m instance Coalgebra r m => Multiplicative (Map r b m) where f * g = Map $ \k b -> (f $# \a -> (g $# comult k a) b) b instance CounitalCoalgebra r m => Unital (Map r b m) where one = Map $ \k _ -> counit k instance Coalgebra r m => Semiring (Map r b m) instance Coalgebra r m => LeftModule (Map r b m) (Map r b m) where (.*) = (*) instance LeftModule r s => LeftModule r (Map s b m) where s .* Map m = Map $ \k b -> s .* m k b instance Coalgebra r m => RightModule (Map r b m) (Map r b m) where (*.) = (*) instance RightModule r s => RightModule r (Map s b m) where Map m *. s = Map $ \k b -> m k b *. s instance Additive r => Alt (Map r b) where Map m Map n = Map $ m + n instance Monoidal r => Plus (Map r b) where zero = Map zero instance Monoidal r => Alternative (Map r b) where Map m <|> Map n = Map $ m + n empty = Map zero instance Monoidal r => MonadPlus (Map r b) where Map m `mplus` Map n = Map $ m + n mzero = Map zero instance Monoidal s => Monoidal (Map s b a) where zero = Map zero sinnum n (Map m) = Map $ sinnum n m instance Abelian s => Abelian (Map s b a) instance Group s => Group (Map s b a) where Map m - Map n = Map $ m - n negate (Map m) = Map $ negate m subtract (Map m) (Map n) = Map $ subtract m n times n (Map m) = Map $ times n m instance (Commutative m, Coalgebra r m) => Commutative (Map r b m) instance (Rig r, CounitalCoalgebra r m) => Rig (Map r b m) instance (Ring r, CounitalCoalgebra r m) => Ring (Map r a m) -- | (inefficiently) combine a linear combination of basis vectors to make a map. -- arrMap :: (Monoidal r, Semiring r) => (b -> [(r, a)]) -> Map r b a -- arrMap f = Map $ \k b -> sum [ r * k a | (r, a) <- f b ] comultMap :: Algebra r a => Map r a (a,a) comultMap = Map $ mult . curry multMap :: Coalgebra r c => Map r (c,c) c multMap = Map $ uncurry . comult counitMap :: UnitalAlgebra r a => Map r a () counitMap = Map $ \k -> unit $ k () unitMap :: CounitalCoalgebra r c => Map r () c unitMap = Map $ \k () -> counit k -- | convolution given an associative algebra and coassociative coalgebra convolveMap :: (Algebra r a, Coalgebra r c) => Map r a c -> Map r a c -> Map r a c convolveMap f g = multMap . (f *** g) . comultMap -- convolveMap antipodeMap id = convolveMap id antipodeMap = unit . counit antipodeMap :: HopfAlgebra r h => Map r h h antipodeMap = Map antipode coinvMap :: InvolutiveAlgebra r a => Map r a a coinvMap = Map inv invMap :: InvolutiveCoalgebra r c => Map r c c invMap = Map coinv {- -- ring homomorphism from r -> r^a embedMap :: (Unital m, CounitalCoalgebra r m) => (b -> r) -> Map r b m embedMap f = Map $ \k b -> f b * k one -- if the characteristic of s does not divide the order of a, then s[a] is semisimple -- and if a has a length function, we can build a filtered algebra -- | The augmentation ring homomorphism from r^a -> r augmentMap :: Unital s => Map s b m -> b -> s augmentMap m = m $# const one -}