{-# LANGUAGE RankNTypes #-} ----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph.Fold -- Copyright : (c) Andrey Mokhov 2016-2017 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : experimental -- -- __Alga__ is a library for algebraic construction and manipulation of graphs -- in Haskell. See for the -- motivation behind the library, the underlying theory, and implementation details. -- -- This module defines the 'Fold' data type -- the Boehm-Berarducci encoding of -- algebraic graphs, which is used for generalised graph folding and for the -- implementation of polymorphic graph construction and transformation algorithms. -- 'Fold' is an instance of type classes defined in modules "Algebra.Graph.Class" -- and "Algebra.Graph.HigherKinded.Class", which can be used for polymorphic -- graph construction and manipulation. ----------------------------------------------------------------------------- module Algebra.Graph.Fold ( -- * Boehm-Berarducci encoding of algebraic graphs Fold, -- * Basic graph construction primitives empty, vertex, edge, overlay, connect, vertices, edges, overlays, connects, C.graph, -- * Graph folding foldg, -- * Relations on graphs C.isSubgraphOf, -- * Graph properties isEmpty, size, hasVertex, hasEdge, vertexCount, edgeCount, vertexList, edgeList, vertexSet, vertexIntSet, edgeSet, -- * Standard families of graphs C.path, C.circuit, C.clique, C.biclique, C.star, C.tree, C.forest, mesh, torus, deBruijn, -- * Graph transformation removeVertex, removeEdge, replaceVertex, mergeVertices, splitVertex, transpose, gmap, bind, induce, simplify, -- * Graph composition box ) where import Control.Applicative hiding (empty) import Control.Monad import Data.Foldable import qualified Algebra.Graph.AdjacencyMap as AM import qualified Algebra.Graph.Class as C import qualified Algebra.Graph.HigherKinded.Class as H import qualified Algebra.Graph.Relation as R import qualified Data.IntSet as IntSet import qualified Data.Set as Set {-| The 'Fold' datatype is the Boehm-Berarducci encoding of the core graph construction primitives 'empty', 'vertex', 'overlay' and 'connect'. We define a law-abiding 'Num' instance as a convenient notation for working with graphs: > 0 == vertex 0 > 1 + 2 == overlay (vertex 1) (vertex 2) > 1 * 2 == connect (vertex 1) (vertex 2) > 1 + 2 * 3 == overlay (vertex 1) (connect (vertex 2) (vertex 3)) > 1 * (2 + 3) == connect (vertex 1) (overlay (vertex 2) (vertex 3)) The 'Show' instance is defined using basic graph construction primitives: @show ('empty' :: Fold Int) == "empty" show (1 :: Fold Int) == "vertex 1" show (1 + 2 :: Fold Int) == "vertices [1,2]" show (1 * 2 :: Fold Int) == "edge 1 2" show (1 * 2 * 3 :: Fold Int) == "edges [(1,2),(1,3),(2,3)]" show (1 * 2 + 3 :: Fold Int) == "graph [1,2,3] [(1,2)]"@ The 'Eq' instance is currently implemented using the 'AM.AdjacencyMap' as the /canonical graph representation/ and satisfies all axioms of algebraic graphs: * 'overlay' is commutative and associative: > x + y == y + x > x + (y + z) == (x + y) + z * 'connect' is associative and has 'empty' as the identity: > x * empty == x > empty * x == x > x * (y * z) == (x * y) * z * 'connect' distributes over 'overlay': > x * (y + z) == x * y + x * z > (x + y) * z == x * z + y * z * 'connect' can be decomposed: > x * y * z == x * y + x * z + y * z The following useful theorems can be proved from the above set of axioms. * 'overlay' has 'empty' as the identity and is idempotent: > x + empty == x > empty + x == x > x + x == x * Absorption and saturation of 'connect': > x * y + x + y == x * y > x * x * x == x * x When specifying the time and memory complexity of graph algorithms, /n/ will denote the number of vertices in the graph, /m/ will denote the number of edges in the graph, and /s/ will denote the /size/ of the corresponding graph expression. For example, if g is a 'Fold' then /n/, /m/ and /s/ can be computed as follows: @n == 'vertexCount' g m == 'edgeCount' g s == 'size' g@ Note that 'size' is slightly different from the 'length' method of the 'Foldable' type class, as the latter does not count 'empty' leaves of the expression: @'length' 'empty' == 0 'size' 'empty' == 1 'length' ('vertex' x) == 1 'size' ('vertex' x) == 1 'length' ('empty' + 'empty') == 0 'size' ('empty' + 'empty') == 2@ The 'size' of any graph is positive, and the difference @('size' g - 'length' g)@ corresponds to the number of occurrences of 'empty' in an expression @g@. Converting a 'Fold' to the corresponding 'AM.AdjacencyMap' takes /O(s + m * log(m))/ time and /O(s + m)/ memory. This is also the complexity of the graph equality test, because it is currently implemented by converting graph expressions to canonical representations based on adjacency maps. -} newtype Fold a = Fold { runFold :: forall b. b -> (a -> b) -> (b -> b -> b) -> (b -> b -> b) -> b } instance (Ord a, Show a) => Show (Fold a) where show f = show (C.toGraph f :: AM.AdjacencyMap a) instance Ord a => Eq (Fold a) where x == y = C.toGraph x == (C.toGraph y :: AM.AdjacencyMap a) instance C.Graph (Fold a) where type Vertex (Fold a) = a empty = Fold $ \e _ _ _ -> e vertex x = Fold $ \_ v _ _ -> v x overlay x y = Fold $ \e v o c -> runFold x e v o c `o` runFold y e v o c connect x y = Fold $ \e v o c -> runFold x e v o c `c` runFold y e v o c instance Num a => Num (Fold a) where fromInteger = vertex . fromInteger (+) = overlay (*) = connect signum = const empty abs = id negate = id instance Functor Fold where fmap = gmap instance Applicative Fold where pure = vertex (<*>) = ap instance Alternative Fold where empty = empty (<|>) = overlay instance MonadPlus Fold where mzero = empty mplus = overlay instance Monad Fold where return = vertex (>>=) = bind instance H.Graph Fold where connect = connect instance Foldable Fold where foldMap f = foldg mempty f mappend mappend instance Traversable Fold where traverse f = foldg (pure empty) (fmap vertex . f) (liftA2 overlay) (liftA2 connect) instance C.ToGraph (Fold a) where type ToVertex (Fold a) = a toGraph = foldg C.empty C.vertex C.overlay C.connect instance H.ToGraph Fold where toGraph = foldg H.empty H.vertex H.overlay H.connect -- | Construct the /empty graph/. -- Complexity: /O(1)/ time, memory and size. -- -- @ -- 'isEmpty' empty == True -- 'hasVertex' x empty == False -- 'vertexCount' empty == 0 -- 'edgeCount' empty == 0 -- 'size' empty == 1 -- @ empty :: C.Graph g => g empty = C.empty -- | Construct the graph comprising /a single isolated vertex/. -- Complexity: /O(1)/ time, memory and size. -- -- @ -- 'isEmpty' (vertex x) == False -- 'hasVertex' x (vertex x) == True -- 'hasVertex' 1 (vertex 2) == False -- 'vertexCount' (vertex x) == 1 -- 'edgeCount' (vertex x) == 0 -- 'size' (vertex x) == 1 -- @ vertex :: C.Graph g => C.Vertex g -> g vertex = C.vertex -- | Construct the graph comprising /a single edge/. -- Complexity: /O(1)/ time, memory and size. -- -- @ -- edge x y == 'connect' ('vertex' x) ('vertex' y) -- 'hasEdge' x y (edge x y) == True -- 'edgeCount' (edge x y) == 1 -- 'vertexCount' (edge 1 1) == 1 -- 'vertexCount' (edge 1 2) == 2 -- @ edge :: C.Graph g => C.Vertex g -> C.Vertex g -> g edge = C.edge -- | /Overlay/ two graphs. This is an idempotent, commutative and associative -- operation with the identity 'empty'. -- Complexity: /O(1)/ time and memory, /O(s1 + s2)/ size. -- -- @ -- 'isEmpty' (overlay x y) == 'isEmpty' x && 'isEmpty' y -- 'hasVertex' z (overlay x y) == 'hasVertex' z x || 'hasVertex' z y -- 'vertexCount' (overlay x y) >= 'vertexCount' x -- 'vertexCount' (overlay x y) <= 'vertexCount' x + 'vertexCount' y -- 'edgeCount' (overlay x y) >= 'edgeCount' x -- 'edgeCount' (overlay x y) <= 'edgeCount' x + 'edgeCount' y -- 'size' (overlay x y) == 'size' x + 'size' y -- 'vertexCount' (overlay 1 2) == 2 -- 'edgeCount' (overlay 1 2) == 0 -- @ overlay :: C.Graph g => g -> g -> g overlay = C.overlay -- | /Connect/ two graphs. This is an associative operation with the identity -- 'empty', which distributes over the overlay and obeys the decomposition axiom. -- Complexity: /O(1)/ time and memory, /O(s1 + s2)/ size. Note that the number -- of edges in the resulting graph is quadratic with respect to the number of -- vertices of the arguments: /m = O(m1 + m2 + n1 * n2)/. -- -- @ -- 'isEmpty' (connect x y) == 'isEmpty' x && 'isEmpty' y -- 'hasVertex' z (connect x y) == 'hasVertex' z x || 'hasVertex' z y -- 'vertexCount' (connect x y) >= 'vertexCount' x -- 'vertexCount' (connect x y) <= 'vertexCount' x + 'vertexCount' y -- 'edgeCount' (connect x y) >= 'edgeCount' x -- 'edgeCount' (connect x y) >= 'edgeCount' y -- 'edgeCount' (connect x y) >= 'vertexCount' x * 'vertexCount' y -- 'edgeCount' (connect x y) <= 'vertexCount' x * 'vertexCount' y + 'edgeCount' x + 'edgeCount' y -- 'size' (connect x y) == 'size' x + 'size' y -- 'vertexCount' (connect 1 2) == 2 -- 'edgeCount' (connect 1 2) == 1 -- @ connect :: C.Graph g => g -> g -> g connect = C.connect -- | Construct the graph comprising a given list of isolated vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- vertices [] == 'empty' -- vertices [x] == 'vertex' x -- 'hasVertex' x . vertices == 'elem' x -- 'vertexCount' . vertices == 'length' . 'Data.List.nub' -- 'vertexSet' . vertices == Set.'Set.fromList' -- @ vertices :: C.Graph g => [C.Vertex g] -> g vertices = C.vertices -- | Construct the graph from a list of edges. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- edges [] == 'empty' -- edges [(x,y)] == 'edge' x y -- 'edgeCount' . edges == 'length' . 'Data.List.nub' -- @ edges :: C.Graph g => [(C.Vertex g, C.Vertex g)] -> g edges = C.edges -- | Overlay a given list of graphs. -- Complexity: /O(L)/ time and memory, and /O(S)/ size, where /L/ is the length -- of the given list, and /S/ is the sum of sizes of the graphs in the list. -- -- @ -- overlays [] == 'empty' -- overlays [x] == x -- overlays [x,y] == 'overlay' x y -- 'isEmpty' . overlays == 'all' 'isEmpty' -- @ overlays :: C.Graph g => [g] -> g overlays = C.overlays -- | Connect a given list of graphs. -- Complexity: /O(L)/ time and memory, and /O(S)/ size, where /L/ is the length -- of the given list, and /S/ is the sum of sizes of the graphs in the list. -- -- @ -- connects [] == 'empty' -- connects [x] == x -- connects [x,y] == 'connect' x y -- 'isEmpty' . connects == 'all' 'isEmpty' -- @ connects :: C.Graph g => [g] -> g connects = C.connects -- | Generalised graph folding: recursively collapse a 'Fold' by applying -- the provided functions to the leaves and internal nodes of the expression. -- The order of arguments is: empty, vertex, overlay and connect. -- Complexity: /O(s)/ applications of given functions. As an example, the -- complexity of 'size' is /O(s)/, since all functions have cost /O(1)/. -- -- @ -- foldg 'empty' 'vertex' 'overlay' 'connect' == id -- foldg 'empty' 'vertex' 'overlay' (flip 'connect') == 'transpose' -- foldg [] return (++) (++) == 'Data.Foldable.toList' -- foldg 0 (const 1) (+) (+) == 'Data.Foldable.length' -- foldg 1 (const 1) (+) (+) == 'size' -- foldg True (const False) (&&) (&&) == 'isEmpty' -- @ foldg :: b -> (a -> b) -> (b -> b -> b) -> (b -> b -> b) -> Fold a -> b foldg e v o c g = runFold g e v o c -- | Check if a graph is empty. A convenient alias for 'null'. -- Complexity: /O(s)/ time. -- -- @ -- isEmpty 'empty' == True -- isEmpty ('overlay' 'empty' 'empty') == True -- isEmpty ('vertex' x) == False -- isEmpty ('removeVertex' x $ 'vertex' x) == True -- isEmpty ('removeEdge' x y $ 'edge' x y) == False -- @ isEmpty :: Fold a -> Bool isEmpty = H.isEmpty -- | The /size/ of a graph, i.e. the number of leaves of the expression -- including 'empty' leaves. -- Complexity: /O(s)/ time. -- -- @ -- size 'empty' == 1 -- size ('vertex' x) == 1 -- size ('overlay' x y) == size x + size y -- size ('connect' x y) == size x + size y -- size x >= 1 -- size x >= 'vertexCount' x -- @ size :: Fold a -> Int size = foldg 1 (const 1) (+) (+) -- | Check if a graph contains a given vertex. A convenient alias for `elem`. -- Complexity: /O(s)/ time. -- -- @ -- hasVertex x 'empty' == False -- hasVertex x ('vertex' x) == True -- hasVertex x . 'removeVertex' x == const False -- @ hasVertex :: Eq a => a -> Fold a -> Bool hasVertex = H.hasVertex -- | Check if a graph contains a given edge. -- Complexity: /O(s)/ time. -- -- @ -- hasEdge x y 'empty' == False -- hasEdge x y ('vertex' z) == False -- hasEdge x y ('edge' x y) == True -- hasEdge x y . 'removeEdge' x y == const False -- @ hasEdge :: Eq a => a -> a -> Fold a -> Bool hasEdge s t = not . intact . edgelessPiece s t edgelessPiece :: forall a. Eq a => a -> a -> Fold a -> Piece (Fold a) edgelessPiece s t g = st where (_, _, st :: Piece (Fold a)) = smash s t g data Piece g = Piece { piece :: g, intact :: Bool, trivial :: Bool } breakIf :: C.Graph g => Bool -> Piece g -> Piece g breakIf True _ = Piece C.empty False True breakIf False x = x instance C.Graph g => C.Graph (Piece g) where type Vertex (Piece g) = C.Vertex g empty = Piece C.empty True True vertex x = Piece (C.vertex x) True False overlay x y = Piece (nonTrivial C.overlay x y) (intact x && intact y) False connect x y = Piece (nonTrivial C.connect x y) (intact x && intact y) False nonTrivial :: (g -> g -> g) -> Piece g -> Piece g -> g nonTrivial f x y | trivial x = piece y | trivial y = piece x | otherwise = f (piece x) (piece y) type Pieces a = (Piece a, Piece a, Piece a) smash :: (Eq (C.Vertex g), C.Graph g) => C.Vertex g -> C.Vertex g -> Fold (C.Vertex g) -> Pieces g smash s t = foldg C.empty v C.overlay c where v x = (breakIf (x == s) $ C.vertex x, breakIf (x == t) $ C.vertex x, C.vertex x) c x@(sx, tx, stx) y@(sy, ty, sty) | intact sx || intact ty = C.connect x y | otherwise = (C.connect sx sy, C.connect tx ty, C.connect sx sty `C.overlay` C.connect stx ty) -- | The number of vertices in a graph. -- Complexity: /O(s * log(n))/ time. -- -- @ -- vertexCount 'empty' == 0 -- vertexCount ('vertex' x) == 1 -- vertexCount == 'length' . 'vertexList' -- @ vertexCount :: Ord a => Fold a -> Int vertexCount = length . vertexList -- | The number of edges in a graph. -- Complexity: /O(s + m * log(m))/ time. Note that the number of edges /m/ of a -- graph can be quadratic with respect to the expression size /s/. -- -- @ -- edgeCount 'empty' == 0 -- edgeCount ('vertex' x) == 0 -- edgeCount ('edge' x y) == 1 -- edgeCount == 'length' . 'edgeList' -- @ edgeCount :: Ord a => Fold a -> Int edgeCount = length . edgeList -- | The sorted list of vertices of a given graph. -- Complexity: /O(s * log(n))/ time and /O(n)/ memory. -- -- @ -- vertexList 'empty' == [] -- vertexList ('vertex' x) == [x] -- vertexList . 'vertices' == 'Data.List.nub' . 'Data.List.sort' -- @ vertexList :: Ord a => Fold a -> [a] vertexList = Set.toAscList . vertexSet -- | The sorted list of edges of a graph. -- Complexity: /O(s + m * log(m))/ time and /O(m)/ memory. Note that the number of -- edges /m/ of a graph can be quadratic with respect to the expression size /s/. -- -- @ -- edgeList 'empty' == [] -- edgeList ('vertex' x) == [] -- edgeList ('edge' x y) == [(x,y)] -- edgeList ('star' 2 [3,1]) == [(2,1), (2,3)] -- edgeList . 'edges' == 'Data.List.nub' . 'Data.List.sort' -- @ edgeList :: Ord a => Fold a -> [(a, a)] edgeList = AM.edgeList . C.toGraph -- | The set of vertices of a given graph. -- Complexity: /O(s * log(n))/ time and /O(n)/ memory. -- -- @ -- vertexSet 'empty' == Set.'Set.empty' -- vertexSet . 'vertex' == Set.'Set.singleton' -- vertexSet . 'vertices' == Set.'Set.fromList' -- vertexSet . 'clique' == Set.'Set.fromList' -- @ vertexSet :: Ord a => Fold a -> Set.Set a vertexSet = H.vertexSet -- | The set of vertices of a given graph. Like 'vertexSet' but specialised for -- graphs with vertices of type 'Int'. -- Complexity: /O(s * log(n))/ time and /O(n)/ memory. -- -- @ -- vertexIntSet 'empty' == IntSet.'IntSet.empty' -- vertexIntSet . 'vertex' == IntSet.'IntSet.singleton' -- vertexIntSet . 'vertices' == IntSet.'IntSet.fromList' -- vertexIntSet . 'clique' == IntSet.'IntSet.fromList' -- @ vertexIntSet :: Fold Int -> IntSet.IntSet vertexIntSet = H.vertexIntSet -- | The set of edges of a given graph. -- Complexity: /O(s * log(m))/ time and /O(m)/ memory. -- -- @ -- edgeSet 'empty' == Set.'Set.empty' -- edgeSet ('vertex' x) == Set.'Set.empty' -- edgeSet ('edge' x y) == Set.'Set.singleton' (x,y) -- edgeSet . 'edges' == Set.'Set.fromList' -- @ edgeSet :: Ord a => Fold a -> Set.Set (a, a) edgeSet = R.edgeSet . C.toGraph -- | Construct a /mesh graph/ from two lists of vertices. -- Complexity: /O(L1 * L2)/ time, memory and size, where /L1/ and /L2/ are the -- lengths of the given lists. -- -- @ -- mesh xs [] == 'empty' -- mesh [] ys == 'empty' -- mesh [x] [y] == 'vertex' (x, y) -- mesh xs ys == 'box' ('path' xs) ('path' ys) -- mesh [1..3] "ab" == 'edges' [ ((1,\'a\'),(1,\'b\')), ((1,\'a\'),(2,\'a\')), ((1,\'b\'),(2,\'b\')), ((2,\'a\'),(2,\'b\')) -- , ((2,\'a\'),(3,\'a\')), ((2,\'b\'),(3,\'b\')), ((3,\'a\'),(3,\'b\')) ] -- @ mesh :: (C.Graph g, C.Vertex g ~ (a, b)) => [a] -> [b] -> g mesh xs ys = C.path xs `box` C.path ys -- | Construct a /torus graph/ from two lists of vertices. -- Complexity: /O(L1 * L2)/ time, memory and size, where /L1/ and /L2/ are the -- lengths of the given lists. -- -- @ -- torus xs [] == 'empty' -- torus [] ys == 'empty' -- torus [x] [y] == 'edge' (x, y) (x, y) -- torus xs ys == 'box' ('circuit' xs) ('circuit' ys) -- torus [1,2] "ab" == 'edges' [ ((1,\'a\'),(1,\'b\')), ((1,\'a\'),(2,\'a\')), ((1,\'b\'),(1,\'a\')), ((1,\'b\'),(2,\'b\')) -- , ((2,\'a\'),(1,\'a\')), ((2,\'a\'),(2,\'b\')), ((2,\'b\'),(1,\'b\')), ((2,\'b\'),(2,\'a\')) ] -- @ torus :: (C.Graph g, C.Vertex g ~ (a, b)) => [a] -> [b] -> g torus xs ys = C.circuit xs `box` C.circuit ys -- | Construct a /De Bruijn graph/ of given dimension and symbols of a given -- alphabet. -- Complexity: /O(A * D^A)/ time, memory and size, where /A/ is the size of the -- alphabet and /D/ is the dimention of the graph. -- -- @ -- deBruijn k [] == 'empty' -- deBruijn 1 [0,1] == 'edges' [ ([0],[0]), ([0],[1]), ([1],[0]), ([1],[1]) ] -- deBruijn 2 "0" == 'edge' "00" "00" -- deBruijn 2 "01" == 'edges' [ ("00","00"), ("00","01"), ("01","10"), ("01","11") -- , ("10","00"), ("10","01"), ("11","10"), ("11","11") ] -- @ deBruijn :: (C.Graph g, C.Vertex g ~ [a]) => Int -> [a] -> g deBruijn len alphabet = bind skeleton expand where overlaps = mapM (const alphabet) [2..len] skeleton = C.edges [ (Left s, Right s) | s <- overlaps ] expand v = C.vertices [ either ([a] ++) (++ [a]) v | a <- alphabet ] -- | Remove a vertex from a given graph. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- removeVertex x ('vertex' x) == 'empty' -- removeVertex x . removeVertex x == removeVertex x -- @ removeVertex :: (Eq (C.Vertex g), C.Graph g) => C.Vertex g -> Fold (C.Vertex g) -> g removeVertex v = induce (/= v) -- | Remove an edge from a given graph. -- Complexity: /O(s)/ time and memory. -- -- @ -- removeEdge x y ('edge' x y) == 'vertices' [x, y] -- removeEdge x y . removeEdge x y == removeEdge x y -- removeEdge x y . 'removeVertex' x == 'removeVertex' x -- removeEdge 1 1 (1 * 1 * 2 * 2) == 1 * 2 * 2 -- removeEdge 1 2 (1 * 1 * 2 * 2) == 1 * 1 + 2 * 2 -- @ removeEdge :: (Eq (C.Vertex g), C.Graph g) => C.Vertex g -> C.Vertex g -> Fold (C.Vertex g) -> g removeEdge s t g = piece st where (_, _, st) = smash s t g -- | The function @'replaceVertex' x y@ replaces vertex @x@ with vertex @y@ in a -- given graph expression. If @y@ already exists, @x@ and @y@ will be merged. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- replaceVertex x x == id -- replaceVertex x y ('vertex' x) == 'vertex' y -- replaceVertex x y == 'mergeVertices' (== x) y -- @ replaceVertex :: (Eq (C.Vertex g), C.Graph g) => C.Vertex g -> C.Vertex g -> Fold (C.Vertex g) -> g replaceVertex u v = gmap $ \w -> if w == u then v else w -- | Merge vertices satisfying a given predicate with a given vertex. -- Complexity: /O(s)/ time, memory and size, assuming that the predicate takes -- /O(1)/ to be evaluated. -- -- @ -- mergeVertices (const False) x == id -- mergeVertices (== x) y == 'replaceVertex' x y -- mergeVertices even 1 (0 * 2) == 1 * 1 -- mergeVertices odd 1 (3 + 4 * 5) == 4 * 1 -- @ mergeVertices :: C.Graph g => (C.Vertex g -> Bool) -> C.Vertex g -> Fold (C.Vertex g) -> g mergeVertices p v = gmap $ \u -> if p u then v else u -- | Split a vertex into a list of vertices with the same connectivity. -- Complexity: /O(s + k * L)/ time, memory and size, where /k/ is the number of -- occurrences of the vertex in the expression and /L/ is the length of the -- given list. -- -- @ -- splitVertex x [] == 'removeVertex' x -- splitVertex x [x] == id -- splitVertex x [y] == 'replaceVertex' x y -- splitVertex 1 [0,1] $ 1 * (2 + 3) == (0 + 1) * (2 + 3) -- @ splitVertex :: (Eq (C.Vertex g), C.Graph g) => C.Vertex g -> [C.Vertex g] -> Fold (C.Vertex g) -> g splitVertex v vs g = bind g $ \u -> if u == v then C.vertices vs else C.vertex u -- | Transpose a given graph. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- transpose 'empty' == 'empty' -- transpose ('vertex' x) == 'vertex' x -- transpose ('edge' x y) == 'edge' y x -- transpose . transpose == id -- @ transpose :: C.Graph g => Fold (C.Vertex g) -> g transpose = foldg C.empty C.vertex C.overlay (flip C.connect) -- | Transform a given graph by applying a function to each of its vertices. -- This is similar to 'fmap' but can be used with non-fully-parametric graphs. -- -- @ -- gmap f 'empty' == 'empty' -- gmap f ('vertex' x) == 'vertex' (f x) -- gmap f ('edge' x y) == 'edge' (f x) (f y) -- gmap id == id -- gmap f . gmap g == gmap (f . g) -- @ gmap :: C.Graph g => (a -> C.Vertex g) -> Fold a -> g gmap f = foldg C.empty (C.vertex . f) C.overlay C.connect -- | Transform a given graph by substituting each of its vertices with a subgraph. -- This is similar to Monad's bind '>>=' but can be used with non-fully-parametric -- graphs. -- -- @ -- bind 'empty' f == 'empty' -- bind ('vertex' x) f == f x -- bind ('edge' x y) f == 'connect' (f x) (f y) -- bind ('vertices' xs) f == 'overlays' ('map' f xs) -- bind x (const 'empty') == 'empty' -- bind x 'vertex' == x -- bind (bind x f) g == bind x (\\y -> bind (f y) g) -- @ bind :: C.Graph g => Fold a -> (a -> g) -> g bind g f = foldg C.empty f C.overlay C.connect g -- | Construct the /induced subgraph/ of a given graph by removing the -- vertices that do not satisfy a given predicate. -- Complexity: /O(s)/ time, memory and size, assuming that the predicate takes -- /O(1)/ to be evaluated. -- -- @ -- induce (const True) x == x -- induce (const False) x == 'empty' -- induce (/= x) == 'removeVertex' x -- induce p . induce q == induce (\\x -> p x && q x) -- 'isSubgraphOf' (induce p x) x == True -- @ induce :: C.Graph g => (C.Vertex g -> Bool) -> Fold (C.Vertex g) -> g induce p g = bind g $ \v -> if p v then C.vertex v else C.empty -- | Simplify a graph expression. Semantically, this is the identity function, -- but it simplifies a given polymorphic graph expression according to the laws -- of the algebra. The function does not compute the simplest possible expression, -- but uses heuristics to obtain useful simplifications in reasonable time. -- Complexity: the function performs /O(s)/ graph comparisons. It is guaranteed -- that the size of the result does not exceed the size of the given expression. -- Below the operator @~>@ denotes the /is simplified to/ relation. -- -- @ -- simplify == id -- 'size' (simplify x) <= 'size' x -- simplify 'empty' ~> 'empty' -- simplify 1 ~> 1 -- simplify (1 + 1) ~> 1 -- simplify (1 + 2 + 1) ~> 1 + 2 -- simplify (1 * 1 * 1) ~> 1 * 1 -- @ simplify :: (Eq g, C.Graph g) => Fold (C.Vertex g) -> g simplify = foldg C.empty C.vertex (simple C.overlay) (simple C.connect) simple :: Eq g => (g -> g -> g) -> g -> g -> g simple op x y | x == z = x | y == z = y | otherwise = z where z = op x y -- | Compute the /Cartesian product/ of graphs. -- Complexity: /O(s1 * s2)/ time, memory and size, where /s1/ and /s2/ are the -- sizes of the given graphs. -- -- @ -- box ('path' [0,1]) ('path' "ab") == 'edges' [ ((0,\'a\'), (0,\'b\')) -- , ((0,\'a\'), (1,\'a\')) -- , ((0,\'b\'), (1,\'b\')) -- , ((1,\'a\'), (1,\'b\')) ] -- @ -- Up to an isomorphism between the resulting vertex types, this operation -- is /commutative/, /associative/, /distributes/ over 'overlay', has singleton -- graphs as /identities/ and 'empty' as the /annihilating zero/. Below @~~@ -- stands for the equality up to an isomorphism, e.g. @(x, ()) ~~ x@. -- -- @ -- box x y ~~ box y x -- box x (box y z) ~~ box (box x y) z -- box x ('overlay' y z) == 'overlay' (box x y) (box x z) -- box x ('vertex' ()) ~~ x -- box x 'empty' ~~ 'empty' -- @ box :: (C.Graph g, C.Vertex g ~ (a, b)) => Fold a -> Fold b -> g box x y = C.overlays $ xs ++ ys where xs = map (\b -> gmap (,b) x) $ toList y ys = map (\a -> gmap (a,) y) $ toList x