----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph.AdjacencyMap.Internal -- Copyright : (c) Andrey Mokhov 2016-2017 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : unstable -- -- This module exposes the implementation of adjacency maps. The API is unstable -- and unsafe. Where possible use non-internal module "Algebra.Graph.AdjacencyMap" -- instead. ----------------------------------------------------------------------------- module Algebra.Graph.AdjacencyMap.Internal ( -- * Adjacency map implementation AdjacencyMap (..), consistent ) where import Data.Map.Strict (Map, keysSet, fromSet) import Data.Set (Set) import Algebra.Graph.Class import qualified Data.Map.Strict as Map import qualified Data.Set as Set {-| The 'AdjacencyMap' data type represents a graph by a map of vertices to their adjacency sets. We define a 'Num' instance as a convenient notation for working with graphs: > 0 == vertex 0 > 1 + 2 == overlay (vertex 1) (vertex 2) > 1 * 2 == connect (vertex 1) (vertex 2) > 1 + 2 * 3 == overlay (vertex 1) (connect (vertex 2) (vertex 3)) > 1 * (2 + 3) == connect (vertex 1) (overlay (vertex 2) (vertex 3)) The 'Show' instance is defined using basic graph construction primitives: @show (empty :: AdjacencyMap Int) == "empty" show (1 :: AdjacencyMap Int) == "vertex 1" show (1 + 2 :: AdjacencyMap Int) == "vertices [1,2]" show (1 * 2 :: AdjacencyMap Int) == "edge 1 2" show (1 * 2 * 3 :: AdjacencyMap Int) == "edges [(1,2),(1,3),(2,3)]" show (1 * 2 + 3 :: AdjacencyMap Int) == "graph [1,2,3] [(1,2)]"@ The 'Eq' instance satisfies all axioms of algebraic graphs: * 'Algebra.Graph.AdjacencyMap.overlay' is commutative and associative: > x + y == y + x > x + (y + z) == (x + y) + z * 'Algebra.Graph.AdjacencyMap.connect' is associative and has 'Algebra.Graph.AdjacencyMap.empty' as the identity: > x * empty == x > empty * x == x > x * (y * z) == (x * y) * z * 'Algebra.Graph.AdjacencyMap.connect' distributes over 'Algebra.Graph.AdjacencyMap.overlay': > x * (y + z) == x * y + x * z > (x + y) * z == x * z + y * z * 'Algebra.Graph.AdjacencyMap.connect' can be decomposed: > x * y * z == x * y + x * z + y * z The following useful theorems can be proved from the above set of axioms. * 'Algebra.Graph.AdjacencyMap.overlay' has 'Algebra.Graph.AdjacencyMap.empty' as the identity and is idempotent: > x + empty == x > empty + x == x > x + x == x * Absorption and saturation of 'Algebra.Graph.AdjacencyMap.connect': > x * y + x + y == x * y > x * x * x == x * x When specifying the time and memory complexity of graph algorithms, /n/ and /m/ will denote the number of vertices and edges in the graph, respectively. -} newtype AdjacencyMap a = AdjacencyMap { -- | The /adjacency map/ of the graph: each vertex is associated with a set -- of its direct successors. adjacencyMap :: Map a (Set a) } deriving Eq instance (Ord a, Show a) => Show (AdjacencyMap a) where show (AdjacencyMap m) | m == Map.empty = "empty" | es == [] = if Set.size vs > 1 then "vertices " ++ show (Set.toAscList vs) else "vertex " ++ show v | vs == referred = if length es > 1 then "edges " ++ show es else "edge " ++ show e ++ " " ++ show f | otherwise = "graph " ++ show (Set.toAscList vs) ++ " " ++ show es where vs = keysSet m es = internalEdgeList m v = head $ Set.toList vs (e, f) = head es referred = referredToVertexSet m instance Ord a => Graph (AdjacencyMap a) where type Vertex (AdjacencyMap a) = a empty = AdjacencyMap $ Map.empty vertex x = AdjacencyMap $ Map.singleton x Set.empty overlay x y = AdjacencyMap $ Map.unionWith Set.union (adjacencyMap x) (adjacencyMap y) connect x y = AdjacencyMap $ Map.unionsWith Set.union [ adjacencyMap x, adjacencyMap y, fromSet (const . keysSet $ adjacencyMap y) (keysSet $ adjacencyMap x) ] instance (Ord a, Num a) => Num (AdjacencyMap a) where fromInteger = vertex . fromInteger (+) = overlay (*) = connect signum = const empty abs = id negate = id -- | Check if the internal graph representation is consistent, i.e. that all -- edges refer to existing vertices. It should be impossible to create an -- inconsistent adjacency map, and we use this function in testing. -- /Note: this function is for internal use only/. -- -- @ -- consistent 'Algebra.Graph.AdjacencyMap.empty' == True -- consistent ('Algebra.Graph.AdjacencyMap.vertex' x) == True -- consistent ('Algebra.Graph.AdjacencyMap.overlay' x y) == True -- consistent ('Algebra.Graph.AdjacencyMap.connect' x y) == True -- consistent ('Algebra.Graph.AdjacencyMap.edge' x y) == True -- consistent ('Algebra.Graph.AdjacencyMap.edges' xs) == True -- consistent ('Algebra.Graph.AdjacencyMap.graph' xs ys) == True -- consistent ('Algebra.Graph.AdjacencyMap.fromAdjacencyList' xs) == True -- @ consistent :: Ord a => AdjacencyMap a -> Bool consistent (AdjacencyMap m) = referredToVertexSet m `Set.isSubsetOf` keysSet m -- The set of vertices that are referred to by the edges referredToVertexSet :: Ord a => Map a (Set a) -> Set a referredToVertexSet = Set.fromList . uncurry (++) . unzip . internalEdgeList -- The list of edges in adjacency map internalEdgeList :: Map a (Set a) -> [(a, a)] internalEdgeList m = [ (x, y) | (x, ys) <- Map.toAscList m, y <- Set.toAscList ys ]