/* Copyright (c) 2013 Scott Lembcke and Howling Moon Software * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef CHIPMUNK_TRANSFORM_H #define CHIPMUNK_TRANSFORM_H #include "chipmunk_types.h" #include "cpVect.h" #include "cpBB.h" /// Identity transform matrix. static const cpTransform cpTransformIdentity = {1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f}; /// Construct a new transform matrix. /// (a, b) is the x basis vector. /// (c, d) is the y basis vector. /// (tx, ty) is the translation. static inline cpTransform cpTransformNew(cpFloat a, cpFloat b, cpFloat c, cpFloat d, cpFloat tx, cpFloat ty) { cpTransform t = {a, b, c, d, tx, ty}; return t; } /// Construct a new transform matrix in transposed order. static inline cpTransform cpTransformNewTranspose(cpFloat a, cpFloat c, cpFloat tx, cpFloat b, cpFloat d, cpFloat ty) { cpTransform t = {a, b, c, d, tx, ty}; return t; } /// Get the inverse of a transform matrix. static inline cpTransform cpTransformInverse(cpTransform t) { cpFloat inv_det = 1.0/(t.a*t.d - t.c*t.b); return cpTransformNewTranspose( t.d*inv_det, -t.c*inv_det, (t.c*t.ty - t.tx*t.d)*inv_det, -t.b*inv_det, t.a*inv_det, (t.tx*t.b - t.a*t.ty)*inv_det ); } /// Multiply two transformation matrices. static inline cpTransform cpTransformMult(cpTransform t1, cpTransform t2) { return cpTransformNewTranspose( t1.a*t2.a + t1.c*t2.b, t1.a*t2.c + t1.c*t2.d, t1.a*t2.tx + t1.c*t2.ty + t1.tx, t1.b*t2.a + t1.d*t2.b, t1.b*t2.c + t1.d*t2.d, t1.b*t2.tx + t1.d*t2.ty + t1.ty ); } /// Transform an absolute point. (i.e. a vertex) static inline cpVect cpTransformPoint(cpTransform t, cpVect p) { return cpv(t.a*p.x + t.c*p.y + t.tx, t.b*p.x + t.d*p.y + t.ty); } /// Transform a vector (i.e. a normal) static inline cpVect cpTransformVect(cpTransform t, cpVect v) { return cpv(t.a*v.x + t.c*v.y, t.b*v.x + t.d*v.y); } /// Transform a cpBB. static inline cpBB cpTransformbBB(cpTransform t, cpBB bb) { cpVect center = cpBBCenter(bb); cpFloat hw = (bb.r - bb.l)*0.5; cpFloat hh = (bb.t - bb.b)*0.5; cpFloat a = t.a*hw, b = t.c*hh, d = t.b*hw, e = t.d*hh; cpFloat hw_max = cpfmax(cpfabs(a + b), cpfabs(a - b)); cpFloat hh_max = cpfmax(cpfabs(d + e), cpfabs(d - e)); return cpBBNewForExtents(cpTransformPoint(t, center), hw_max, hh_max); } /// Create a transation matrix. static inline cpTransform cpTransformTranslate(cpVect translate) { return cpTransformNewTranspose( 1.0, 0.0, translate.x, 0.0, 1.0, translate.y ); } /// Create a scale matrix. static inline cpTransform cpTransformScale(cpFloat scaleX, cpFloat scaleY) { return cpTransformNewTranspose( scaleX, 0.0, 0.0, 0.0, scaleY, 0.0 ); } /// Create a rotation matrix. static inline cpTransform cpTransformRotate(cpFloat radians) { cpVect rot = cpvforangle(radians); return cpTransformNewTranspose( rot.x, -rot.y, 0.0, rot.y, rot.x, 0.0 ); } /// Create a rigid transformation matrix. (transation + rotation) static inline cpTransform cpTransformRigid(cpVect translate, cpFloat radians) { cpVect rot = cpvforangle(radians); return cpTransformNewTranspose( rot.x, -rot.y, translate.x, rot.y, rot.x, translate.y ); } /// Fast inverse of a rigid transformation matrix. static inline cpTransform cpTransformRigidInverse(cpTransform t) { return cpTransformNewTranspose( t.d, -t.c, (t.c*t.ty - t.tx*t.d), -t.b, t.a, (t.tx*t.b - t.a*t.ty) ); } //MARK: Miscellaneous (but useful) transformation matrices. // See source for documentation... static inline cpTransform cpTransformWrap(cpTransform outer, cpTransform inner) { return cpTransformMult(cpTransformInverse(outer), cpTransformMult(inner, outer)); } static inline cpTransform cpTransformWrapInverse(cpTransform outer, cpTransform inner) { return cpTransformMult(outer, cpTransformMult(inner, cpTransformInverse(outer))); } static inline cpTransform cpTransformOrtho(cpBB bb) { return cpTransformNewTranspose( 2.0/(bb.r - bb.l), 0.0, -(bb.r + bb.l)/(bb.r - bb.l), 0.0, 2.0/(bb.t - bb.b), -(bb.t + bb.b)/(bb.t - bb.b) ); } static inline cpTransform cpTransformBoneScale(cpVect v0, cpVect v1) { cpVect d = cpvsub(v1, v0); return cpTransformNewTranspose( d.x, -d.y, v0.x, d.y, d.x, v0.y ); } static inline cpTransform cpTransformAxialScale(cpVect axis, cpVect pivot, cpFloat scale) { cpFloat A = axis.x*axis.y*(scale - 1.0); cpFloat B = cpvdot(axis, pivot)*(1.0 - scale); return cpTransformNewTranspose( scale*axis.x*axis.x + axis.y*axis.y, A, axis.x*B, A, axis.x*axis.x + scale*axis.y*axis.y, axis.y*B ); } #endif