-- A0 and C0 in Kuhl+Giardina λxs.λys. { sum ← [(+)/x] ; tieSelf ← [({.x)⊳x]; Δ ← [(-)\~(tieSelf x)] ; dxs ⟜ Δ xs; dys ⟜ Δ ys ; dts ⟜ [√(x^2+y^2)]`dxs dys ; pxs ← (+)Λ dxs; pys ← (+)Λ dys; pts ⟜ (+)Λ dts ; dtss ⟜ (-)\~((^2)'(0<|pts)) ; T ⟜}. pts ; 𝜉 ← (-)`pxs ((*)`((%)`dxs dts) pts) ; 𝛿 ← (-)`pys ((*)`((%)`dys dts) pts) ; A ← ((sum ((*)`((%)`dxs dts) dtss))%2 + (sum ((*)`𝜉 dts)))%T ; C ← ((sum ((*)`((%)`dys dts) dtss))%2 + (sum ((*)`𝛿 dts)))%T ; (A,C) }