!4(c      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ Continued fractionsMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafe   Lucas sequencesMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafe2Generating random natural numbers of a given widthMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafeUtility functionsMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafe ! !An abstract ring typeMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafe"#('%$&)*+,-./012"#('%$&)*+,-./012Polynomial arithmeticMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafe3465789:;<=>?@ABCDEFGHIJKLMNOPQ3465789:;<=>?@ABCDEFGHIJKLMNOPQ2Modular arithmetic using Montgomery multiplicationMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafeo#STVUWX_^]\[ZY`abcdefghijklmnopqrstu#WX_^]\[ZYSTVU`abcdefghijklmnopqrstuModular arithmeticMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafe xyz{|}~ xyz{|}~ Natural number square rootMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafe !Pell's equation (a^2 = n*b^2 + 1)MIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafe  Leftist heapsMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafe W !The genuine sieve of EratosphenesMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafe"' Generating random primesMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafe# Factorized natural numbersMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafe%!Williams p+1 factorization methodMIT Joe Leslie-Hurd <joe@gilith.com> provisionalportableSafe(/ !"#$%&'()*+,-./01123456789:;<=>??@AB6CDEF7GHIJKLMNOP234Q:R5STUUVWXXYZ[\]^_`abcdefg678293:4;<=hijkd2345S9:;<=> l l m n o p q r s t u v w x y z { | } ~   2   2 ! 74<g"%arithmetic-1.4-4hF2WICCN19CcpBFJQlTjvArithmetic.ContinuedFractionArithmetic.LucasArithmetic.RandomArithmetic.UtilityArithmetic.RingArithmetic.PolynomialArithmetic.MontgomeryArithmetic.ModularArithmetic.QuadraticArithmetic.PellArithmetic.Utility.HeapArithmetic.Prime.SieveArithmetic.PrimeArithmetic.Prime.FactorArithmetic.WilliamsContinuedFractionunContinuedFraction fromNatural goldenRationaturalLogarithmBase convergentsFn numerators denominators convergentsunstableConvergentsfractionalConvergentsrationalConvergentstoDouble fromRealFracinvert$fShowContinuedFraction$fEqContinuedFractionadvancesequence uSequence vSequencerandomPairWith randomPair randomMaybe randomFilter randomWidth randomOdd randomCoprimedistance functionPowermultiplyExponential factorTwos factorOutRingaddnegatemultiplydividezeroonetwodoublesubtractsquareexpexp2divides Polynomialcarrier coefficientsfromCoefficientsisZeroconstant destConstant isConstantmultiplyByPowermonomial variablePowervariabledegreeleadingCoefficientnthCoefficientisMonicevaluateaddCoefficientsmultiplyByScalarquotientRemainderring$fShowPolynomial Montgomery pMontgomery nMontgomery Parameters nParameters wParameters sParameters kParameters rParameters r2Parameters zParametersaligncustomParametersalignedParametersstandardParameters normalize normalize1reduce toNaturalmodexpmodexp2$fShowParameters$fShowMontgomeryResidue NonResidueZero rootFloor rootCeiling destSquareisSquarerootContinuedFractionrootContinuedFractionPeriodic!rootContinuedFractionPeriodicTail jacobiSymbol isResidue isNonResidue nextResiduenextNonResiduerootModuloPrime3Mod4rootModuloPrime5Mod8rootModuloPrime $fEqResidue $fOrdResidue $fShowResidue chakravala solutionssolutionHeapsizeisEmptyemptyremovetoList $fShowHeap $fShowNodeSieveunSieveinitialbump $fShowSieveprimesmillerRabinWitness millerRabinisPrime previousPrime nextPrimenextPrime3Mod4nextPrime5Mod8 randomPrimerandomPrime3Mod4randomPrime5Mod8FactorunFactor primePowersisOne primePowerdestPrimePower isPrimePowerprime destPrimedestRSAisRSArootdestRootisRootgcd trialDivision destSmoothisSmooth nextSmoothmultiplicativetotient factorPowerfactor randomRSA $fShowFactornthExpnthbasemethod