-- | -- Module: Math.NumberTheory.DirichletCharacters -- Copyright: (c) 2018 Bhavik Mehta -- Licence: MIT -- Maintainer: Bhavik Mehta -- -- Implementation and enumeration of Dirichlet characters. -- {-# LANGUAGE DataKinds #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE PatternSynonyms #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE ViewPatterns #-} module Math.NumberTheory.DirichletCharacters ( -- * An absorbing semigroup OrZero, pattern Zero, pattern NonZero , orZeroToNum -- * Dirichlet characters , DirichletCharacter -- ** Construction , indexToChar , indicesToChars , characterNumber , allChars , fromTable -- ** Evaluation , eval , evalGeneral , evalAll -- ** Special Dirichlet characters , principalChar , isPrincipal , orderChar -- ** Real Dirichlet characters , RealCharacter , isRealCharacter , getRealChar , toRealFunction , jacobiCharacter -- ** Primitive characters , PrimitiveCharacter , isPrimitive , getPrimitiveChar , induced , makePrimitive , WithNat(..) -- * Roots of unity , RootOfUnity(..) , toRootOfUnity , toComplex -- * Debugging , validChar ) where import Data.Bits (Bits(..)) import Data.Constraint import Data.Foldable import Data.Functor.Identity (Identity(..)) import Data.Kind import Data.List (sort, unfoldr) import Data.Maybe (mapMaybe, fromJust, fromMaybe) import Data.Mod import Data.Monoid (Ap(..)) import Data.Proxy (Proxy(..)) import Data.Ratio ((%), numerator, denominator) import Data.Semigroup (Semigroup(..),Product(..)) import Data.Traversable import qualified Data.Vector as V import qualified Data.Vector.Mutable as MV import Data.Vector (Vector, (!)) import GHC.TypeNats (KnownNat, Nat, SomeNat(..), natVal, someNatVal) import Numeric.Natural (Natural) import Math.NumberTheory.ArithmeticFunctions (totient) import Math.NumberTheory.Moduli.Chinese import Math.NumberTheory.Moduli.Internal (discreteLogarithmPP) import Math.NumberTheory.Moduli.Multiplicative import Math.NumberTheory.Moduli.Singleton import Math.NumberTheory.Primes import Math.NumberTheory.RootsOfUnity import Math.NumberTheory.Utils import Math.NumberTheory.Utils.FromIntegral -- | A Dirichlet character mod \(n\) is a group homomorphism from \((\mathbb{Z}/n\mathbb{Z})^*\) -- to \(\mathbb{C}^*\), represented abstractly by `DirichletCharacter`. In particular, they take -- values at roots of unity and can be evaluated using `eval`. -- A Dirichlet character can be extended to a completely multiplicative function on \(\mathbb{Z}\) -- by assigning the value 0 for \(a\) sharing a common factor with \(n\), using `evalGeneral`. -- -- There are finitely many possible Dirichlet characters for a given modulus, in particular there -- are \(\phi(n)\) characters modulo \(n\), where \(\phi\) refers to Euler's `totient` function. -- This gives rise to `Enum` and `Bounded` instances. newtype DirichletCharacter (n :: Nat) = Generated [DirichletFactor] -- | The group (Z/nZ)^* decomposes to a product (Z/2^k0 Z)^* x (Z/p1^k1 Z)^* x ... x (Z/pi^ki Z)^* -- where n = 2^k0 p1^k1 ... pi^ki, and the pj are odd primes, k0 possibly 0. Thus, a group -- homomorphism from (Z/nZ)^* is characterised by group homomorphisms from each of these factor -- groups. Furthermore, for odd p, we have (Z/p^k Z)^* isomorphic to Z / p^(k-1)*(p-1) Z, an -- additive group, where an isomorphism is specified by a choice of primitive root. -- Similarly, for k >= 2, (Z/2^k Z)^* is isomorphic to Z/2Z * (Z / 2^(k-2) Z) (and for k < 2 -- it is trivial). (See @lambda@ for this isomorphism). -- Thus, to specify a Dirichlet character, it suffices to specify the value of generators -- of each of these cyclic groups, when primitive roots are given. This data is given by a -- DirichletFactor. -- We have the invariant that the factors must be given in strictly increasing order, and the -- generator is as given by @generator@, and are each non-trivial. These conditions are verified -- using `validChar`. data DirichletFactor = OddPrime { _getPrime :: Prime Natural , _getPower :: Word , _getGenerator :: Natural , _getValue :: RootOfUnity } | TwoPower { _getPower2 :: Int -- this ought to be Word, but many applications -- needed to use wordToInt, so Int is cleaner -- Required to be >= 2 , _getFirstValue :: RootOfUnity , _getSecondValue :: RootOfUnity } | Two instance Eq (DirichletCharacter n) where Generated a == Generated b = a == b instance Eq DirichletFactor where TwoPower _ x1 x2 == TwoPower _ y1 y2 = x1 == y1 && x2 == y2 OddPrime _ _ _ x == OddPrime _ _ _ y = x == y Two == Two = True _ == _ = False -- | For primes, define the canonical primitive root as the smallest such. generator :: Prime Natural -> Word -> Natural generator p k = case cyclicGroupFromFactors [(p, k)] of Nothing -> error "illegal" Just (Some cg) -> case proofFromCyclicGroup cg of Sub Dict -> case mapMaybe (isPrimitiveRoot cg) [2..maxBound] of [] -> error "illegal" hd : _ -> unMod $ multElement $ unPrimitiveRoot hd -- | Implement the function \(\lambda\) from page 5 of -- https://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/CSD-84-186.pdf lambda :: Integer -> Int -> Integer lambda x e = ((xPower - 1) `shiftR` (e+1)) .&. (modulus - 1) where modulus = 1 `shiftL` (e - 2) largeMod = 1 `shiftL` (2 * e - 1) xPower = case someNatVal largeMod of SomeNat (_ :: Proxy largeMod) -> toInteger (unMod (fromInteger x ^ (2 * modulus) :: Mod largeMod)) -- | For elements of the multiplicative group \((\mathbb{Z}/n\mathbb{Z})^*\), a Dirichlet -- character evaluates to a root of unity. eval :: DirichletCharacter n -> MultMod n -> RootOfUnity eval (Generated ds) m = foldMap (evalFactor m') ds where m' = toInteger $ unMod $ multElement m -- | Evaluate each factor of the Dirichlet character. evalFactor :: Integer -> DirichletFactor -> RootOfUnity evalFactor m = \case OddPrime (toInteger . unPrime -> p) k (toInteger -> a) b -> discreteLogarithmPP p k a (m `rem` p^k) `stimes` b TwoPower k s b -> (if testBit m 1 then s else mempty) <> lambda (thingy k m) k `stimes` b Two -> mempty thingy :: (Bits p, Num p) => Int -> p -> p thingy k m = if testBit m 1 then bit k - m' else m' where m' = m .&. (bit k - 1) -- | A character can evaluate to a root of unity or zero: represented by @Nothing@. evalGeneral :: KnownNat n => DirichletCharacter n -> Mod n -> OrZero RootOfUnity evalGeneral chi t = case isMultElement t of Nothing -> Zero Just x -> NonZero $ eval chi x -- | Give the principal character for this modulus: a principal character mod \(n\) is 1 for -- \(a\) coprime to \(n\), and 0 otherwise. principalChar :: KnownNat n => DirichletCharacter n principalChar = minBound mulChars :: DirichletCharacter n -> DirichletCharacter n -> DirichletCharacter n mulChars (Generated x) (Generated y) = Generated (zipWith combine x y) where combine :: DirichletFactor -> DirichletFactor -> DirichletFactor combine Two Two = Two combine (OddPrime p k g n) (OddPrime _ _ _ m) = OddPrime p k g (n <> m) combine (TwoPower k a n) (TwoPower _ b m) = TwoPower k (a <> b) (n <> m) combine _ _ = error "internal error: malformed DirichletCharacter" -- | This Semigroup is in fact a group, so @stimes@ can be called with a negative first argument. instance Semigroup (DirichletCharacter n) where (<>) = mulChars stimes = stimesChar instance KnownNat n => Monoid (DirichletCharacter n) where mempty = principalChar mappend = (<>) stimesChar :: Integral a => a -> DirichletCharacter n -> DirichletCharacter n stimesChar s (Generated xs) = Generated (map mult xs) where mult :: DirichletFactor -> DirichletFactor mult (OddPrime p k g n) = OddPrime p k g (s `stimes` n) mult (TwoPower k a b) = TwoPower k (s `stimes` a) (s `stimes` b) mult Two = Two -- | We define `succ` and `pred` with more efficient implementations than -- @`toEnum` . (+1) . `fromEnum`@. instance KnownNat n => Enum (DirichletCharacter n) where toEnum = indexToChar . intToNatural fromEnum = integerToInt . characterNumber succ x = makeChar x (characterNumber x + 1) pred x = makeChar x (characterNumber x - 1) enumFromTo x y = bulkMakeChars x [fromEnum x..fromEnum y] enumFrom x = bulkMakeChars x [fromEnum x..] enumFromThenTo x y z = bulkMakeChars x [fromEnum x, fromEnum y..fromEnum z] enumFromThen x y = bulkMakeChars x [fromEnum x, fromEnum y..] instance KnownNat n => Bounded (DirichletCharacter n) where minBound = indexToChar 0 maxBound = indexToChar (totient n - 1) where n = natVal (Proxy :: Proxy n) -- | We have a (non-canonical) enumeration of dirichlet characters. characterNumber :: DirichletCharacter n -> Integer characterNumber (Generated y) = foldl' go 0 y where go x (OddPrime p k _ a) = x * m + numerator (fromRootOfUnity a * (m % 1)) where p' = naturalToInteger (unPrime p) m = p'^(k-1)*(p'-1) go x (TwoPower k a b) = x' * 2 + numerator (fromRootOfUnity a * 2) where m = bit (k-2) :: Integer x' = x `shiftL` (k-2) + numerator (fromRootOfUnity b * (m % 1)) go x Two = x -- | Give the dirichlet character from its number. -- Inverse of `characterNumber`. indexToChar :: forall n. KnownNat n => Natural -> DirichletCharacter n indexToChar = runIdentity . indicesToChars . Identity -- | Give a collection of dirichlet characters from their numbers. This may be more efficient than -- `indexToChar` for multiple characters, as it prevents some internal recalculations. indicesToChars :: forall n f. (KnownNat n, Functor f) => f Natural -> f (DirichletCharacter n) indicesToChars = fmap (Generated . unroll t . (`mod` m)) where n = natVal (Proxy :: Proxy n) (Product m, t) = mkTemplate n -- | List all characters for the modulus. This is preferred to using @[minBound..maxBound]@. allChars :: forall n. KnownNat n => [DirichletCharacter n] allChars = indicesToChars [0..m-1] where m = totient $ natVal (Proxy :: Proxy n) -- | The same as `indexToChar`, but if we're given a character we can create others more efficiently. makeChar :: Integral a => DirichletCharacter n -> a -> DirichletCharacter n makeChar x = runIdentity . bulkMakeChars x . Identity -- | Use one character to make many more: better than indicesToChars since it avoids recalculating -- some primitive roots bulkMakeChars :: (Integral a, Functor f) => DirichletCharacter n -> f a -> f (DirichletCharacter n) bulkMakeChars x = fmap (Generated . unroll t . (`mod` m) . fromIntegral') where (Product m, t) = templateFromCharacter x -- We assign each natural a unique Template, which can be decorated (eg in `unroll`) to -- form a DirichletCharacter. A Template effectively holds the information carried around -- in a DirichletFactor which depends only on the modulus of the character. data Template = OddTemplate { _getPrime' :: Prime Natural , _getPower' :: Word , _getGenerator' :: !Natural , _getModulus' :: !Natural } | TwoPTemplate { _getPower2' :: Int , _getModulus' :: !Natural } -- the modulus is derivable from the other values, but calculation -- may be expensive, so we pre-calculate it -- morally getModulus should be a prefactored but seems to be -- pointless here | TwoTemplate templateFromCharacter :: DirichletCharacter n -> (Product Natural, [Template]) templateFromCharacter (Generated t) = traverse go t where go (OddPrime p k g _) = (Product m, OddTemplate p k g m) where p' = unPrime p m = p'^(k-1)*(p'-1) go (TwoPower k _ _) = (Product (2*m), TwoPTemplate k m) where m = bit (k-2) go Two = (Product 1, TwoTemplate) mkTemplate :: Natural -> (Product Natural, [Template]) mkTemplate = go . sort . factorise where go :: [(Prime Natural, Word)] -> (Product Natural, [Template]) go ((unPrime -> 2, 1): xs) = (Product 1, [TwoTemplate]) <> traverse odds xs go ((unPrime -> 2, wordToInt -> k): xs) = (Product (2*m), [TwoPTemplate k m]) <> traverse odds xs where m = bit (k-2) go xs = traverse odds xs odds :: (Prime Natural, Word) -> (Product Natural, Template) odds (p, k) = (Product m, OddTemplate p k (generator p k) m) where p' = unPrime p m = p'^(k-1)*(p'-1) -- the validity of the producted dirichletfactor list here requires the template to be valid unroll :: [Template] -> Natural -> [DirichletFactor] unroll t m = snd (mapAccumL func m t) where func :: Natural -> Template -> (Natural, DirichletFactor) func a (OddTemplate p k g n) = (a1, OddPrime p k g (toRootOfUnity $ toInteger a2 % toInteger n)) where (a1,a2) = quotRem a n func a (TwoPTemplate k n) = (b1, TwoPower k (toRootOfUnity $ toInteger a2 % 2) (toRootOfUnity $ toInteger b2 % toInteger n)) where (a1,a2) = quotRem a 2 (b1,b2) = quotRem a1 n func a TwoTemplate = (a, Two) -- | Test if a given Dirichlet character is prinicpal for its modulus: a principal character mod -- \(n\) is 1 for \(a\) coprime to \(n\), and 0 otherwise. isPrincipal :: DirichletCharacter n -> Bool isPrincipal chi = characterNumber chi == 0 -- | Induce a Dirichlet character to a higher modulus. If \(d \mid n\), then \(a \bmod{n}\) can be -- reduced to \(a \bmod{d}\). Thus, the multiplicative function on \(\mathbb{Z}/d\mathbb{Z}\) -- induces a multiplicative function on \(\mathbb{Z}/n\mathbb{Z}\). -- -- >>> :set -XTypeApplications -XDataKinds -- >>> chi = indexToChar 5 :: DirichletCharacter 45 -- >>> chi2 = induced @135 chi :: Maybe (DirichletCharacter 135) induced :: forall n d. (KnownNat d, KnownNat n) => DirichletCharacter d -> Maybe (DirichletCharacter n) induced (Generated start) = if n `rem` d == 0 then Just (Generated (combine (snd $ mkTemplate n) start)) else Nothing where n = natVal (Proxy :: Proxy n) d = natVal (Proxy :: Proxy d) combine :: [Template] -> [DirichletFactor] -> [DirichletFactor] combine [] _ = [] combine ts [] = map newFactor ts combine (t:xs) (y:ys) = case (t,y) of (TwoTemplate, Two) -> Two: combine xs ys (TwoTemplate, _) -> Two: combine xs (y:ys) (TwoPTemplate k _, Two) -> TwoPower k mempty mempty: combine xs ys (TwoPTemplate k _, TwoPower _ a b) -> TwoPower k a b: combine xs ys (TwoPTemplate k _, _) -> TwoPower k mempty mempty: combine xs (y:ys) (OddTemplate p k _ _, OddPrime q _ g a) | p == q -> OddPrime p k g a: combine xs ys (OddTemplate p k g _, OddPrime q _ _ _) | p < q -> OddPrime p k g mempty: combine xs (y:ys) _ -> error "internal error in induced: please report this as a bug" newFactor :: Template -> DirichletFactor newFactor TwoTemplate = Two newFactor (TwoPTemplate k _) = TwoPower k mempty mempty newFactor (OddTemplate p k g _) = OddPrime p k g mempty -- | The gives a real Dirichlet -- character for odd moduli. jacobiCharacter :: forall n. KnownNat n => Maybe (RealCharacter n) jacobiCharacter = if odd n then Just $ RealChar $ Generated $ map go $ snd $ mkTemplate n else Nothing where n = natVal (Proxy :: Proxy n) go :: Template -> DirichletFactor go (OddTemplate p k g _) = OddPrime p k g $ toRootOfUnity (toInteger k % 2) -- jacobi symbol of a primitive root mod p over p is always -1 go _ = error "internal error in jacobiCharacter: please report this as a bug" -- every factor of n should be odd -- | A Dirichlet character is real if it is real-valued. newtype RealCharacter n = RealChar { -- | Extract the character itself from a `RealCharacter`. getRealChar :: DirichletCharacter n } deriving Eq -- | Test if a given `DirichletCharacter` is real, and if so give a `RealCharacter`. isRealCharacter :: DirichletCharacter n -> Maybe (RealCharacter n) isRealCharacter t@(Generated xs) = if all real xs then Just (RealChar t) else Nothing where real :: DirichletFactor -> Bool real (OddPrime _ _ _ a) = a <> a == mempty real (TwoPower _ _ b) = b <> b == mempty real Two = True -- TODO: it should be possible to calculate this without eval/evalGeneral -- and thus avoid using discrete log calculations: consider the order of m -- inside each of the factor groups? -- | Evaluate a real Dirichlet character, which can only take values \(-1,0,1\). toRealFunction :: KnownNat n => RealCharacter n -> Mod n -> Int toRealFunction (RealChar chi) m = case evalGeneral chi m of Zero -> 0 NonZero t | t == mempty -> 1 NonZero t | t == RootOfUnity (1 % 2) -> -1 _ -> error "internal error in toRealFunction: please report this as a bug" -- A real character should not be able to evaluate to -- anything other than {-1,0,1}, so should not reach this branch -- | Test if the internal DirichletCharacter structure is valid. validChar :: forall n. KnownNat n => DirichletCharacter n -> Bool validChar (Generated xs) = correctDecomposition && all correctPrimitiveRoot xs && all validValued xs where correctDecomposition = sort (factorise n) == map getPP xs getPP (TwoPower k _ _) = (two, intToWord k) getPP (OddPrime p k _ _) = (p, k) getPP Two = (two,1) correctPrimitiveRoot (OddPrime p k g _) = g == generator p k correctPrimitiveRoot _ = True validValued (TwoPower k a b) = a <> a == mempty && (bit (k-2) :: Integer) `stimes` b == mempty validValued (OddPrime (unPrime -> p) k _ a) = (p^(k-1)*(p-1)) `stimes` a == mempty validValued Two = True n = natVal (Proxy :: Proxy n) two = nextPrime 2 -- | Get the order of the Dirichlet Character. orderChar :: DirichletCharacter n -> Integer orderChar (Generated xs) = foldl' lcm 1 $ map orderFactor xs where orderFactor (TwoPower _ (RootOfUnity a) (RootOfUnity b)) = denominator a `lcm` denominator b orderFactor (OddPrime _ _ _ (RootOfUnity a)) = denominator a orderFactor Two = 1 -- | Test if a Dirichlet character is . isPrimitive :: DirichletCharacter n -> Maybe (PrimitiveCharacter n) isPrimitive t@(Generated xs) = if all primitive xs then Just (PrimitiveCharacter t) else Nothing where primitive :: DirichletFactor -> Bool primitive Two = False -- for odd p, we're testing if phi(p^(k-1)) `stimes` a is 1, since this means the -- character can come from some the smaller modulus p^(k-1) primitive (OddPrime _ 1 _ a) = a /= mempty primitive (OddPrime (unPrime -> p) k _ a) = (p^(k-2)*(p-1)) `stimes` a /= mempty primitive (TwoPower 2 a _) = a /= mempty primitive (TwoPower k _ b) = (bit (k-3) :: Integer) `stimes` b /= mempty -- | A Dirichlet character is primitive if cannot be 'induced' from any character with -- strictly smaller modulus. newtype PrimitiveCharacter n = PrimitiveCharacter { -- | Extract the character itself from a `PrimitiveCharacter`. getPrimitiveChar :: DirichletCharacter n } deriving Eq -- | Wrapper to hide an unknown type-level natural. data WithNat (a :: Nat -> Type) where WithNat :: KnownNat m => a m -> WithNat a -- | This function also provides access to the new modulus on type level, with a KnownNat instance makePrimitive :: DirichletCharacter n -> WithNat PrimitiveCharacter makePrimitive (Generated xs) = case someNatVal (product mods) of SomeNat (Proxy :: Proxy m) -> WithNat (PrimitiveCharacter (Generated ys) :: PrimitiveCharacter m) where (mods,ys) = unzip (mapMaybe prim xs) prim :: DirichletFactor -> Maybe (Natural, DirichletFactor) prim Two = Nothing prim (OddPrime p' k g a) = case find works options of Nothing -> error "invalid character" Just (0,_) -> Nothing Just (i,_) -> Just (p^i, OddPrime p' i g a) where options = (0,1): [(i,p^(i-1)*(p-1)) | i <- [1..k]] works (_,phi) = phi `stimes` a == mempty p = unPrime p' prim (TwoPower k a b) = case find worksb options of Nothing -> error "invalid character" Just (2,_) | a == mempty -> Nothing Just (i,_) -> Just (bit i :: Natural, TwoPower i a b) where options = [(i, bit (i-2) :: Natural) | i <- [2..k]] worksb (_,phi) = phi `stimes` b == mempty -- | Similar to Maybe, but with different Semigroup and Monoid instances. type OrZero a = Ap Maybe a -- | 'Ap' 'Nothing' pattern Zero :: OrZero a pattern Zero = Ap Nothing -- | 'Ap' ('Just' x) pattern NonZero :: a -> OrZero a pattern NonZero x = Ap (Just x) {-# COMPLETE Zero, NonZero #-} -- | Interpret an `OrZero` as a number, taking the `Zero` case to be 0. orZeroToNum :: Num a => (b -> a) -> OrZero b -> a orZeroToNum _ Zero = 0 orZeroToNum f (NonZero x) = f x -- | In general, evaluating a DirichletCharacter at a point involves solving the discrete logarithm -- problem, which can be hard: the implementations here are around O(sqrt n). -- However, evaluating a dirichlet character at every point amounts to solving the discrete -- logarithm problem at every point also, which can be done together in O(n) time, better than -- using a complex algorithm at each point separately. Thus, if a large number of evaluations -- of a dirichlet character are required, `evalAll` will be better than `evalGeneral`, since -- computations can be shared. evalAll :: forall n. KnownNat n => DirichletCharacter n -> Vector (OrZero RootOfUnity) evalAll (Generated xs) = V.generate (naturalToInt n) func where n = natVal (Proxy :: Proxy n) vectors = map mkVector xs func :: Int -> OrZero RootOfUnity func m = foldMap go vectors where go :: (Int, Vector (OrZero RootOfUnity)) -> OrZero RootOfUnity go (modulus,v) = v ! (m `mod` modulus) mkVector :: DirichletFactor -> (Int, Vector (OrZero RootOfUnity)) mkVector Two = (2, V.fromList [Zero, mempty]) mkVector (OddPrime p k (naturalToInt -> g) a) = (modulus, w) where p' = unPrime p modulus = naturalToInt (p'^k) :: Int w = V.create $ do v <- MV.replicate modulus Zero -- TODO: we're in the ST monad here anyway, could be better to use STRefs to manage -- this loop, the current implementation probably doesn't fuse well let powers = iterateMaybe go (1,mempty) go (m,x) = if m' > 1 then Just (m', x<>a) else Nothing where m' = m*g `mod` modulus for_ powers $ \(m,x) -> MV.unsafeWrite v m (NonZero x) -- don't bother with bounds check since m was reduced mod p^k return v -- for powers of two we use lambda directly instead, since the generators of the cyclic -- groups aren't obvious; it's possible to get them though: -- 5^(lambda(5)^{-1} mod 2^(p-2)) mod 2^p mkVector (TwoPower k a b) = (modulus, w) where modulus = bit k w = V.generate modulus f f m | even m = Zero | otherwise = NonZero ((if testBit m 1 then a else mempty) <> lambda (toInteger m'') k `stimes` b) where m'' = thingy k m -- somewhere between unfoldr and iterate iterateMaybe :: (a -> Maybe a) -> a -> [a] iterateMaybe f x = unfoldr (fmap (\t -> (t, f t))) (Just x) -- | Attempt to construct a character from its table of values. -- An inverse to `evalAll`, defined only on its image. fromTable :: forall n. KnownNat n => Vector (OrZero RootOfUnity) -> Maybe (DirichletCharacter n) fromTable v = if length v == naturalToInt n then traverse makeFactor tmpl >>= check . Generated else Nothing where n = natVal (Proxy :: Proxy n) n' = naturalToInteger n :: Integer tmpl = snd (mkTemplate n) check :: DirichletCharacter n -> Maybe (DirichletCharacter n) check chi = if evalAll chi == v then Just chi else Nothing makeFactor :: Template -> Maybe DirichletFactor makeFactor TwoTemplate = Just Two makeFactor (TwoPTemplate k _) = TwoPower k <$> getValue (-1,bit k) <*> getValue (exp4 k, bit k) makeFactor (OddTemplate p k g _) = OddPrime p k g <$> getValue (toInteger g, toInteger (unPrime p)^k) getValue :: (Integer, Integer) -> Maybe RootOfUnity getValue (g, m) = getAp (v ! fromInteger (fst (fromJust (chinese (g, m) (1, n' `quot` m))) `mod` n')) exp4terms :: [Rational] exp4terms = [4^k % product [1..k] | k <- [0..]] -- For reasons that aren't clear to me, `exp4` gives the inverse of 1 under lambda, so it gives the generator -- This is the same as https://oeis.org/A320814 -- In particular, lambda (exp4 n) n == 1 (for n >= 3) -- I've verified this for 3 <= n <= 2000, so the reasoning in fromTable should be accurate for moduli below 2^2000 exp4 :: Int -> Integer exp4 n = (`mod` bit n) $ sum $ map (\q -> (numerator q * fromMaybe (error "error in exp4") (recipMod (denominator q) (bit n))) `mod` bit n) $ take n exp4terms