-- | -- Module: Math.NumberTheory.GaussianIntegers -- Copyright: (c) 2016 Chris Fredrickson, Google Inc. -- Licence: MIT -- Maintainer: Chris Fredrickson -- -- This module exports functions for manipulating Gaussian integers, including -- computing their prime factorisations. -- {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE PostfixOperators #-} {-# LANGUAGE TypeFamilies #-} module Math.NumberTheory.Quadratic.GaussianIntegers ( GaussianInteger(..), ι, conjugate, norm, primes, findPrime, ) where import Prelude hiding (quot, quotRem) import Control.DeepSeq (NFData) import Data.Coerce import Data.Euclidean import Data.List (mapAccumL) import Data.List.Infinite (Infinite(..), (...)) import qualified Data.List.Infinite as Inf import Data.List.NonEmpty (NonEmpty(..)) import Data.Maybe import Data.Ord (comparing) import qualified Data.Semiring as S import GHC.Generics import Math.NumberTheory.Moduli.Sqrt import Math.NumberTheory.Roots (integerSquareRoot) import Math.NumberTheory.Primes.Types import qualified Math.NumberTheory.Primes as U import Math.NumberTheory.Utils (mergeBy) import Math.NumberTheory.Utils.FromIntegral infix 6 :+ -- |A Gaussian integer is a+bi, where a and b are both integers. data GaussianInteger = (:+) { real :: !Integer, imag :: !Integer } deriving (Eq, Ord, Generic) instance NFData GaussianInteger -- |The imaginary unit, where -- -- > ι .^ 2 == -1 ι :: GaussianInteger ι = 0 :+ 1 instance Show GaussianInteger where show (a :+ b) | b == 0 = show a | a == 0 = s ++ b' | otherwise = show a ++ op ++ b' where b' = if abs b == 1 then "ι" else show (abs b) ++ "*ι" op = if b > 0 then "+" else "-" s = if b > 0 then "" else "-" instance Num GaussianInteger where (+) (a :+ b) (c :+ d) = (a + c) :+ (b + d) (*) (a :+ b) (c :+ d) = (a * c - b * d) :+ (a * d + b * c) abs = fst . absSignum negate (a :+ b) = (-a) :+ (-b) fromInteger n = n :+ 0 signum = snd . absSignum instance S.Semiring GaussianInteger where plus = (+) times = (*) zero = 0 :+ 0 one = 1 :+ 0 fromNatural n = naturalToInteger n :+ 0 instance S.Ring GaussianInteger where negate = negate absSignum :: GaussianInteger -> (GaussianInteger, GaussianInteger) absSignum 0 = (0, 0) absSignum z@(a :+ b) -- first quadrant: (0, inf) x [0, inf)i | a > 0 && b >= 0 = (z, 1) -- second quadrant: (-inf, 0] x (0, inf)i | a <= 0 && b > 0 = (b :+ (-a), ι) -- third quadrant: (-inf, 0) x (-inf, 0]i | a < 0 && b <= 0 = (-z, -1) -- fourth quadrant: [0, inf) x (-inf, 0)i | otherwise = ((-b) :+ a, -ι) instance GcdDomain GaussianInteger instance Euclidean GaussianInteger where degree = fromInteger . norm quotRem x (d :+ 0) = quotRemInt x d quotRem x y = (q, x - q * y) where (q, _) = quotRemInt (x * conjugate y) (norm y) quotRemInt :: GaussianInteger -> Integer -> (GaussianInteger, GaussianInteger) quotRemInt z 1 = ( z, 0) quotRemInt z (-1) = (-z, 0) quotRemInt (a :+ b) c = (qa :+ qb, (ra - bumpA) :+ (rb - bumpB)) where halfC = abs c `quot` 2 bumpA = signum a * halfC bumpB = signum b * halfC (qa, ra) = (a + bumpA) `quotRem` c (qb, rb) = (b + bumpB) `quotRem` c -- |Conjugate a Gaussian integer. conjugate :: GaussianInteger -> GaussianInteger conjugate (r :+ i) = r :+ (-i) -- |The square of the magnitude of a Gaussian integer. norm :: GaussianInteger -> Integer norm (x :+ y) = x * x + y * y -- |Compute whether a given Gaussian integer is prime. isPrime :: GaussianInteger -> Bool isPrime g@(x :+ y) | x == 0 && y /= 0 = abs y `mod` 4 == 3 && isJust (U.isPrime y) | y == 0 && x /= 0 = abs x `mod` 4 == 3 && isJust (U.isPrime x) | otherwise = isJust $ U.isPrime $ norm g -- |An infinite list of the Gaussian primes. Uses primes in Z to exhaustively -- generate all Gaussian primes (up to associates), in order of ascending -- magnitude. -- -- >>> take 10 primes -- [Prime 1+ι,Prime 2+ι,Prime 1+2*ι,Prime 3,Prime 3+2*ι,Prime 2+3*ι,Prime 4+ι,Prime 1+4*ι,Prime 5+2*ι,Prime 2+5*ι] primes :: Infinite (U.Prime GaussianInteger) primes = coerce $ (1 :+ 1) :< mergeBy (comparing norm) l r where leftPrimes, rightPrimes :: Infinite (Prime Integer) (leftPrimes, rightPrimes) = Inf.partition (\p -> unPrime p `mod` 4 == 3) (U.nextPrime 3 ...) l :: Infinite (GaussianInteger) l = fmap (\p -> unPrime p :+ 0) leftPrimes r :: Infinite (GaussianInteger) r = Inf.concatMap (\p -> let x :+ y = unPrime (findPrime p) in (x :+ y) :| [y :+ x]) rightPrimes -- |Find a Gaussian integer whose norm is the given prime number -- of form 4k + 1 using -- . -- -- >>> import Math.NumberTheory.Primes (nextPrime) -- >>> findPrime (nextPrime 5) -- Prime 2+ι findPrime :: Prime Integer -> U.Prime GaussianInteger findPrime p = case sqrtsModPrime (-1) p of [] -> error "findPrime: an argument must be prime p = 4k + 1" z : _ -> Prime $ go (unPrime p) z -- Effectively we calculate gcdG' (p :+ 0) (z :+ 1) where sqrtp :: Integer sqrtp = integerSquareRoot (unPrime p) go :: Integer -> Integer -> GaussianInteger go g h | g <= sqrtp = g :+ h | otherwise = go h (g `mod` h) -- | Compute the prime factorisation of a Gaussian integer. This is unique up to units (+/- 1, +/- i). -- Unit factors are not included in the result. factorise :: GaussianInteger -> [(Prime GaussianInteger, Word)] factorise g = concat $ snd $ mapAccumL go g (U.factorise $ norm g) where go :: GaussianInteger -> (Prime Integer, Word) -> (GaussianInteger, [(Prime GaussianInteger, Word)]) go z (Prime 2, e) = (divideByTwo z, [(Prime (1 :+ 1), e)]) go z (p, e) | unPrime p `mod` 4 == 3 = let e' = e `quot` 2 in (z `quotI` (unPrime p ^ e'), [(Prime (unPrime p :+ 0), e')]) | otherwise = (z', filter ((> 0) . snd) [(gp, k), (gp', k')]) where gp = findPrime p (k, k', z') = divideByPrime gp (unPrime p) e z gp' = Prime (abs (conjugate (unPrime gp))) -- | Remove all (1:+1) factors from the argument, -- avoiding complex division. divideByTwo :: GaussianInteger -> GaussianInteger divideByTwo z@(x :+ y) | even x, even y = divideByTwo $ z `quotI` 2 | odd x, odd y = (x - y) `quot` 2 :+ (x + y) `quot` 2 | otherwise = z -- | Remove p and conj p factors from the argument, -- avoiding complex division. divideByPrime :: Prime GaussianInteger -- ^ Gaussian prime p -> Integer -- ^ Precomputed norm of p, of form 4k + 1 -> Word -- ^ Expected number of factors (either p or conj p) -- in Gaussian integer z -> GaussianInteger -- ^ Gaussian integer z -> ( Word -- Multiplicity of factor p in z , Word -- Multiplicity of factor conj p in z , GaussianInteger -- Remaining Gaussian integer ) divideByPrime p np k = go k 0 where go :: Word -> Word -> GaussianInteger -> (Word, Word, GaussianInteger) go 0 d z = (d, d, z) go c d z | c >= 2 , Just z' <- z `quotEvenI` np = go (c - 2) (d + 1) z' go c d z = (d + d1, d + d2, z'') where (d1, z') = go1 c 0 z d2 = c - d1 z'' = iterate (\g -> fromMaybe err $ (g * unPrime p) `quotEvenI` np) z' !! wordToInt d2 go1 :: Word -> Word -> GaussianInteger -> (Word, GaussianInteger) go1 0 d z = (d, z) go1 c d z | Just z' <- (z * conjugate (unPrime p)) `quotEvenI` np = go1 (c - 1) (d + 1) z' | otherwise = (d, z) err = error $ "divideByPrime: malformed arguments" ++ show (p, np, k) quotI :: GaussianInteger -> Integer -> GaussianInteger quotI (x :+ y) n = x `quot` n :+ y `quot` n quotEvenI :: GaussianInteger -> Integer -> Maybe GaussianInteger quotEvenI (x :+ y) n | xr == 0 , yr == 0 = Just (xq :+ yq) | otherwise = Nothing where (xq, xr) = x `quotRem` n (yq, yr) = y `quotRem` n ------------------------------------------------------------------------------- instance U.UniqueFactorisation GaussianInteger where factorise 0 = [] factorise g = coerce $ factorise g isPrime g = if isPrime g then Just (Prime g) else Nothing