-- | -- Module: Math.NumberTheory.Utils -- Copyright: (c) 2011 Daniel Fischer -- Licence: MIT -- Maintainer: Daniel Fischer -- -- Some utilities, mostly for bit twiddling. -- {-# LANGUAGE BangPatterns #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE GADTs #-} module Math.NumberTheory.Utils ( SomeKnown(..) , shiftToOddCount , shiftToOdd , shiftToOdd# , shiftToOddCount# , shiftToOddCountBigNat , splitOff , splitOff# , mergeBy , recipMod , toWheel30 , fromWheel30 , withSomeKnown , intVal ) where import Prelude hiding (mod, quotRem) import qualified Prelude as P import Data.Bits import Data.Euclidean import Data.List.Infinite (Infinite(..)) import Data.Semiring (Semiring(..), isZero) import GHC.Base import GHC.Num.BigNat import GHC.Num.Integer import GHC.Num.Natural import qualified Math.NumberTheory.Utils.FromIntegral as UT import GHC.Natural import GHC.TypeNats import Math.NumberTheory.Utils.FromIntegral (intToWord) -- | Remove factors of @2@ and count them. If -- @n = 2^k*m@ with @m@ odd, the result is @(k, m)@. -- Precondition: argument not @0@ (not checked). {-# RULES "shiftToOddCount/Int" shiftToOddCount = shiftOCInt "shiftToOddCount/Word" shiftToOddCount = shiftOCWord "shiftToOddCount/Integer" shiftToOddCount = shiftOCInteger "shiftToOddCount/Natural" shiftToOddCount = shiftOCNatural #-} {-# INLINE [1] shiftToOddCount #-} shiftToOddCount :: Integral a => a -> (Word, a) shiftToOddCount n = case shiftOCInteger (toInteger n) of (z, o) -> (z, fromInteger o) -- | Specialised version for @'Word'@. -- Precondition: argument strictly positive (not checked). shiftOCWord :: Word -> (Word, Word) shiftOCWord (W# w#) = case shiftToOddCount# w# of (# z# , u# #) -> (W# z#, W# u#) -- | Specialised version for @'Int'@. -- Precondition: argument nonzero (not checked). shiftOCInt :: Int -> (Word, Int) shiftOCInt (I# i#) = case shiftToOddCount# (int2Word# i#) of (# z#, u# #) -> (W# z#, I# (word2Int# u#)) -- | Specialised version for @'Integer'@. -- Precondition: argument nonzero (not checked). shiftOCInteger :: Integer -> (Word, Integer) shiftOCInteger n@(IS i#) = case shiftToOddCount# (int2Word# i#) of (# 0##, _ #) -> (0, n) (# z#, w# #) -> (W# z#, integerFromWord# w#) shiftOCInteger n@(IP bn#) = case bigNatZeroCount bn# of 0## -> (0, n) z# -> (W# z#, integerFromBigNat# (bn# `bigNatShiftR#` z#)) shiftOCInteger n@(IN bn#) = case bigNatZeroCount bn# of 0## -> (0, n) z# -> (W# z#, integerFromBigNatNeg# (bn# `bigNatShiftR#` z#)) -- | Specialised version for @'Natural'@. -- Precondition: argument nonzero (not checked). shiftOCNatural :: Natural -> (Word, Natural) shiftOCNatural n@(NatS# i#) = case shiftToOddCount# i# of (# 0##, _ #) -> (0, n) (# z#, w# #) -> (W# z#, NatS# w#) shiftOCNatural n@(NatJ# (BN# bn#)) = case bigNatZeroCount bn# of 0## -> (0, n) z# -> (W# z#, naturalFromBigNat# (bn# `bigNatShiftR#` z#)) shiftToOddCountBigNat :: BigNat# -> (# Word, BigNat# #) shiftToOddCountBigNat bn# = case bigNatZeroCount bn# of 0## -> (# 0, bn# #) z# -> (# W# z#, bn# `bigNatShiftR#` z# #) -- | Count trailing zeros in a @'BigNat'@. -- Precondition: argument nonzero (not checked, Integer invariant). bigNatZeroCount :: BigNat# -> Word# bigNatZeroCount bn# = count 0## 0# where !(W# bitSize#) = intToWord (finiteBitSize (0 :: Word)) count a# i# = case bigNatIndex# bn# i# of 0## -> count (a# `plusWord#` bitSize#) (i# +# 1#) w# -> a# `plusWord#` ctz# w# -- | Remove factors of @2@. If @n = 2^k*m@ with @m@ odd, the result is @m@. -- Precondition: argument not @0@ (not checked). {-# RULES "shiftToOdd/Int" shiftToOdd = shiftOInt "shiftToOdd/Word" shiftToOdd = shiftOWord "shiftToOdd/Integer" shiftToOdd = shiftOInteger #-} {-# INLINE [1] shiftToOdd #-} shiftToOdd :: Integral a => a -> a shiftToOdd n = fromInteger (shiftOInteger (toInteger n)) -- | Specialised version for @'Int'@. -- Precondition: argument nonzero (not checked). shiftOInt :: Int -> Int shiftOInt (I# i#) = I# (word2Int# (shiftToOdd# (int2Word# i#))) -- | Specialised version for @'Word'@. -- Precondition: argument nonzero (not checked). shiftOWord :: Word -> Word shiftOWord (W# w#) = W# (shiftToOdd# w#) -- | Specialised version for @'Int'@. -- Precondition: argument nonzero (not checked). shiftOInteger :: Integer -> Integer shiftOInteger (IS i#) = integerFromWord# (shiftToOdd# (int2Word# i#)) shiftOInteger n@(IP bn#) = case bigNatZeroCount bn# of 0## -> n z# -> integerFromBigNat# (bn# `bigNatShiftR#` z#) shiftOInteger n@(IN bn#) = case bigNatZeroCount bn# of 0## -> n z# -> integerFromBigNatNeg# (bn# `bigNatShiftR#` z#) -- | Shift argument right until the result is odd. -- Precondition: argument not @0@, not checked. shiftToOdd# :: Word# -> Word# shiftToOdd# w# = uncheckedShiftRL# w# (word2Int# (ctz# w#)) -- | Like @'shiftToOdd#'@, but count the number of places to shift too. shiftToOddCount# :: Word# -> (# Word#, Word# #) shiftToOddCount# w# = case ctz# w# of k# -> (# k#, uncheckedShiftRL# w# (word2Int# k#) #) splitOff :: (Eq a, GcdDomain a) => a -> a -> (Word, a) splitOff p n | isZero n = (0, zero) -- prevent infinite loop | otherwise = go 0 n where go !k m = case m `divide` p of Just q -> go (k + 1) q _ -> (k, m) {-# INLINABLE splitOff #-} -- | It is difficult to convince GHC to unbox output of 'splitOff' and 'splitOff.go', -- so we fallback to a specialized unboxed version to minimize allocations. splitOff# :: Word# -> Word# -> (# Word#, Word# #) splitOff# _ 0## = (# 0##, 0## #) splitOff# p n = go 0## n where go k m = case m `quotRemWord#` p of (# q, 0## #) -> go (k `plusWord#` 1##) q _ -> (# k, m #) {-# INLINABLE splitOff# #-} -- | Merges two ordered lists into an ordered list. Checks for neither its -- precondition or postcondition. mergeBy :: (a -> a -> Ordering) -> Infinite a -> Infinite a -> Infinite a mergeBy cmp = loop where loop ( x:< xs) (y :< ys) = case cmp x y of GT -> y :< loop (x :< xs) ys _ -> x :< loop xs (y :< ys) -- | Work around https://ghc.haskell.org/trac/ghc/ticket/14085 recipMod :: Integer -> Integer -> Maybe Integer recipMod x m = case integerRecipMod# (x `P.mod` m) (fromInteger m) of (# | _ #) -> Nothing (# y | #) -> Just (toInteger y) ------------------------------------------------------------------------------- -- Helpers for mapping to rough numbers and back. -- Copypasted from Data.BitStream.WheelMapping toWheel30 :: (Integral a, Bits a) => a -> a toWheel30 i = q `shiftL` 3 + (r + r `shiftR` 4) `shiftR` 2 where (q, r) = i `P.quotRem` 30 fromWheel30 :: (Num a, Bits a) => a -> a fromWheel30 i = ((i `shiftL` 2 - i `shiftR` 2) .|. 1) + ((i `shiftL` 1 - i `shiftR` 1) .&. 2) ------------------------------------------------------------------------------- -- Helpers for dealing with data types parametrised by natural numbers. data SomeKnown (f :: Nat -> Type) where SomeKnown :: KnownNat k => f k -> SomeKnown f withSomeKnown :: (forall k. KnownNat k => f k -> a) -> SomeKnown f -> a withSomeKnown f (SomeKnown x) = f x intVal :: KnownNat k => a k -> Int intVal = UT.naturalToInt . natVal