module Math.NumberTheory.Primes.Testing.Certificates.Internal
( Certificate(..)
, CompositenessProof(..)
, PrimalityProof(..)
, CompositenessArgument(..)
, PrimalityArgument(..)
, checkCertificate
, checkCompositenessProof
, checkPrimalityProof
, certify
, trivial
, smallCert
, certifyBPSW
, argueCertificate
, arguePrimality
, argueCompositeness
, verifyPrimalityArgument
, verifyCompositenessArgument
) where
import Data.List
import Data.Word
import Data.Bits
import Data.Maybe
import Math.NumberTheory.Moduli
import Math.NumberTheory.Utils
import Math.NumberTheory.Primes.Factorisation.TrialDivision
import Math.NumberTheory.Primes.Factorisation.Montgomery
import Math.NumberTheory.Primes.Testing.Probabilistic
import Math.NumberTheory.Primes.Sieve.Eratosthenes
import Math.NumberTheory.Powers.Squares
data Certificate
= Composite !CompositenessProof
| Prime !PrimalityProof
deriving Show
data CompositenessProof
= Factors { composite :: !Integer
, firstFactor
, secondFactor :: !Integer }
| StrongFermat { composite :: !Integer
, witness :: !Integer }
| LucasSelfridge { composite :: !Integer
}
deriving Show
data CompositenessArgument
= Divisors { compo, firstDivisor, secondDivisor :: Integer }
| Fermat { compo, fermatBase :: Integer }
| Lucas { compo :: Integer }
| Belief { compo :: Integer }
deriving (Show, Read, Eq, Ord)
data PrimalityProof
= Pocklington { cprime :: !Integer
, factorisedPart, cofactor :: !Integer
, knownFactors :: ![(Integer,Int,Integer,PrimalityProof)]
}
| TrialDivision { cprime :: !Integer
, tdLimit :: !Integer }
| Trivial { cprime :: !Integer
}
deriving Show
data PrimalityArgument
= Pock { aprime :: Integer
, largeFactor, smallFactor :: Integer
, factorList :: [(Integer,Int,Integer,PrimalityArgument)]
}
| Division { aprime, alimit :: Integer }
| Obvious { aprime :: Integer }
| Assumption { aprime :: Integer }
deriving (Show, Read, Eq, Ord)
argueCertificate :: Certificate -> Either CompositenessArgument PrimalityArgument
argueCertificate (Composite proof) = Left (argueCompositeness proof)
argueCertificate (Prime proof) = Right (arguePrimality proof)
arguePrimality :: PrimalityProof -> PrimalityArgument
arguePrimality (TrialDivision p l) = Division p l
arguePrimality (Trivial p) = Obvious p
arguePrimality (Pocklington p a b fcts) = Pock p a b (map argue fcts)
where
argue (x,y,z,prf) = (x,y,z,arguePrimality prf)
verifyPrimalityArgument :: PrimalityArgument -> Maybe PrimalityProof
verifyPrimalityArgument (Assumption p)
= case certify p of
Composite _ -> Nothing
Prime proof -> Just proof
verifyPrimalityArgument arg
| checkPrimalityProof prf = Just prf
| otherwise = Nothing
where
prf = primProof arg
primProof :: PrimalityArgument -> PrimalityProof
primProof (Division p l) = TrialDivision p l
primProof (Obvious p) = Trivial p
primProof (Assumption p) = case certify p of
Composite _ -> Trivial p
Prime proof -> proof
primProof (Pock p a b fcts) = Pocklington p a b (map prove fcts)
where
prove (x,y,z,arg) = (x,y,z,primProof arg)
argueCompositeness :: CompositenessProof -> CompositenessArgument
argueCompositeness (Factors c f s) = Divisors c f s
argueCompositeness (StrongFermat c b) = Fermat c b
argueCompositeness (LucasSelfridge c) = Lucas c
verifyCompositenessArgument :: CompositenessArgument -> Maybe CompositenessProof
verifyCompositenessArgument (Belief c)
= case certify c of
Composite proof -> Just proof
Prime _ -> Nothing
verifyCompositenessArgument arg
| checkCompositenessProof prf = Just prf
| otherwise = Nothing
where
prf = compProof arg
compProof :: CompositenessArgument -> CompositenessProof
compProof (Divisors c f s) = Factors c f s
compProof (Fermat c b) = StrongFermat c b
compProof (Lucas c) = LucasSelfridge c
compProof (Belief _) = error "Trying to prove by belief"
checkCertificate :: Certificate -> Bool
checkCertificate (Composite cp) = checkCompositenessProof cp
checkCertificate (Prime pp) = checkPrimalityProof pp
checkCompositenessProof :: CompositenessProof -> Bool
checkCompositenessProof (Factors c a b) = a > 1 && b > 1 && a*b == c
checkCompositenessProof (StrongFermat c w) = w > 1 && c > w && not (isStrongFermatPP c w)
checkCompositenessProof (LucasSelfridge c) = c > 3 && fromIntegral c .&. (1 :: Int) == 1 && lucasTest c
checkPrimalityProof :: PrimalityProof -> Bool
checkPrimalityProof (Trivial n) = isTrivialPrime n
checkPrimalityProof (TrialDivision p b) = p <= b*b && trialDivisionPrimeTo b p
checkPrimalityProof (Pocklington p a b fcts) = b > 0 && a > b && a*b == pm1 && a == ppProd fcts && all verify fcts
where
pm1 = p1
ppProd pps = product [pf^e | (pf,e,_,_) <- pps]
verify (pf,_,base,proof) = pf == cprime proof && crit pf base && checkPrimalityProof proof
crit pf base = gcd p (x1) == 1 && y == 1
where
x = powerModInteger' base (pm1 `quot` pf) p
y = powerModInteger' x pf p
trivial :: Integer -> PrimalityProof
trivial n = fromMaybe oops $ maybeTrivial n
where
oops = error ("trivial: " ++ show n ++ " isn't a trivially known prime.")
maybeTrivial :: Integer -> Maybe PrimalityProof
maybeTrivial n
| isTrivialPrime n = Just (Trivial n)
| otherwise = Nothing
isTrivialPrime :: Integer -> Bool
isTrivialPrime n = n `elem` trivialPrimes
trivialPrimes :: [Integer]
trivialPrimes = [2,3,5,7,11,13,17,19,23,29]
smallCert :: Integer -> PrimalityProof
smallCert n
| n < 30 = Trivial n
| otherwise = TrialDivision n (integerSquareRoot' n + 1)
certify :: Integer -> Certificate
certify n
| n < 2 = error "Only numbers larger than 1 can be certified"
| n < 31 = case trialDivisionWith trivialPrimes n of
((p,_):_) | p < n -> Composite (Factors n p (n `quot` p))
| otherwise -> Prime (Trivial n)
_ -> error "Impossible"
| n < billi = let r2 = integerSquareRoot' n + 2 in
case trialDivisionTo r2 n of
((p,_):_) | p < n -> Composite (Factors n p (n `quot` p))
| otherwise -> Prime (TrialDivision n r2)
_ -> error "Impossible"
| otherwise = case smallFactors 100000 n of
([], Just _) | not (isStrongFermatPP n 2) -> Composite (StrongFermat n 2)
| not (lucasTest n) -> Composite (LucasSelfridge n)
| otherwise -> Prime (certifyBPSW n)
((p,_):_, _) | p == n -> Prime (TrialDivision n (min 100000 n))
| otherwise -> Composite (Factors n p (n `quot` p))
_ -> error ("***Error factorising " ++ show n ++ "! Please report this to maintainer of arithmoi.")
where
billi = 1000000000000
certifyBPSW :: Integer -> PrimalityProof
certifyBPSW n = Pocklington n a b kfcts
where
nm1 = n1
h = nm1 `quot` 2
m3 = fromInteger n .&. (3 :: Int) == 3
(a,pp,b) = findDecomposition nm1
kfcts0 = map check pp
kfcts = foldl' force [] kfcts0
force xs t@(_,_,_,prf) = prf `seq` (t:xs)
check (p,e,byTD) = go 2
where
go bs
| bs > h = error (bpswMessage n)
| x == 1 = if m3 && (p == 2) then (p,e,nbs,Trivial 2) else go (bs+1)
| g /= 1 = error (bpswMessage n ++ found g)
| y /= 1 = error (bpswMessage n ++ fermat bs)
| byTD = (p,e,bs, smallCert p)
| otherwise = case certify p of
Composite cpr -> error ("***Error in factorisation code: " ++ show p
++ " was supposed to be prime but isn't.\n"
++ "Please report this to the maintainer.\n\n"
++ show cpr)
Prime ppr ->(p,e,bs,ppr)
where
q = nm1 `quot` p
x = powerModInteger' bs q n
y = powerModInteger' x p n
g = gcd n (x1)
findDecomposition :: Integer -> (Integer, [(Integer,Int,Bool)], Integer)
findDecomposition n = go 1 n [] prms
where
sr = integerSquareRoot' n
pbd = min 1000000 (sr+20)
prms = primeList (primeSieve $ pbd)
go a b afs (p:ps)
| a > b = (a,afs,b)
| otherwise = case splitOff p b of
(0,_) -> go a b afs ps
(e,q) -> go (a*p^e) q ((p,e,True):afs) ps
go a b afs []
| a > b = (a,afs,b)
| bailliePSW b = (b,[(b,1,False)],a)
| e == 0 = error ("Error in factorisation, " ++ show p ++ " was found as a factor of " ++ show b ++ " but isn't.")
| otherwise = go (a*p^e) q ((p,e,False):afs) []
where
p = findFactor b 8 6
(e,q) = splitOff p b
findFactor :: Integer -> Int -> Integer -> Integer
findFactor n digits s = case findLoop n lo hi count s of
Left t -> findFactor n (digits+5) t
Right f -> f
where
(lo,hi,count) = findParms digits
findLoop :: Integer -> Word -> Word -> Int -> Integer -> Either Integer Integer
findLoop _ _ _ 0 s = Left s
findLoop n lo hi ct s
| n <= s+2 = Left 6
| otherwise = case montgomeryFactorisation n lo hi s of
Nothing -> findLoop n lo hi (ct1) (s+1)
Just fct
| bailliePSW fct -> Right fct
| otherwise -> Right (findFactor fct 8 (s+1))
bpswMessage :: Integer -> String
bpswMessage n = unlines
[ "\n***Congratulations! You found a Baillie PSW pseudoprime!"
, "Please report this finding to the package maintainer,"
, "<daniel.is.fischer@googlemail.com>"
, "The number in question is:\n"
, show n
, "\nOther parties like wikipedia might also be interested."
, "\nSorry for aborting your programme, but this is a major discovery."
]
found :: Integer -> String
found g = "\nA nontrivial divisor is:\n" ++ show g
fermat :: Integer -> String
fermat b = "\nThe Fermat test fails for base\n" ++ show b