module Math.NumberTheory.Utils
( shiftToOddCount
, shiftToOdd
, shiftToOdd#
, shiftToOddCount#
, bitCountWord
, bitCountInt
, bitCountWord#
, uncheckedShiftR
, splitOff
, splitOff#
) where
#include "MachDeps.h"
import GHC.Base
import GHC.Integer
import GHC.Integer.GMP.Internals
import Data.Bits
#if WORD_SIZE_IN_BITS == 64
#define m5 0x5555555555555555
#define m3 0x3333333333333333
#define mf 0x0F0F0F0F0F0F0F0F
#define m1 0x0101010101010101
#define sd 56
#else
#define m5 0x55555555
#define m3 0x33333333
#define mf 0x0F0F0F0F
#define m1 0x01010101
#define sd 24
#endif
uncheckedShiftR :: Word -> Int -> Word
uncheckedShiftR (W# w#) (I# i#) = W# (uncheckedShiftRL# w# i#)
shiftToOddCount :: Integral a => a -> (Int, a)
shiftToOddCount n = case shiftOCInteger (fromIntegral n) of
(z, o) -> (z, fromInteger o)
shiftOCWord :: Word -> (Int, Word)
shiftOCWord (W# w#) = case shiftToOddCount# w# of
(# z# , u# #) -> (I# z#, W# u#)
shiftOCInt :: Int -> (Int, Int)
shiftOCInt (I# i#) = case shiftToOddCount# (int2Word# i#) of
(# z#, u# #) -> (I# z#, I# (word2Int# u#))
shiftOCInteger :: Integer -> (Int, Integer)
shiftOCInteger n@(S# i#) =
case shiftToOddCount# (int2Word# i#) of
(# z#, w# #)
| isTrue# (z# ==# 0#) -> (0, n)
| otherwise -> (I# z#, S# (word2Int# w#))
#if __GLASGOW_HASKELL__ < 709
shiftOCInteger n@(J# _ ba#) = case count 0# 0# of
#else
shiftOCInteger n@(Jp# bn#) = case bigNatZeroCount bn# of
0# -> (0, n)
z# -> (I# z#, n `shiftRInteger` z#)
shiftOCInteger n@(Jn# bn#) = case bigNatZeroCount bn# of
#endif
0# -> (0, n)
z# -> (I# z#, n `shiftRInteger` z#)
#if __GLASGOW_HASKELL__ < 709
where
count a# i# =
case indexWordArray# ba# i# of
0## -> count (a# +# WORD_SIZE_IN_BITS#) (i# +# 1#)
w# -> a# +# trailZeros# w#
#endif
#if __GLASGOW_HASKELL__ >= 709
bigNatZeroCount :: BigNat -> Int#
bigNatZeroCount bn# = count 0# 0#
where
count a# i# =
case indexBigNat# bn# i# of
0## -> count (a# +# WORD_SIZE_IN_BITS#) (i# +# 1#)
w# -> a# +# trailZeros# w#
#endif
shiftToOdd :: Integral a => a -> a
shiftToOdd n = fromInteger (shiftOInteger (fromIntegral n))
shiftOInt :: Int -> Int
shiftOInt (I# i#) = I# (word2Int# (shiftToOdd# (int2Word# i#)))
shiftOWord :: Word -> Word
shiftOWord (W# w#) = W# (shiftToOdd# w#)
shiftOInteger :: Integer -> Integer
shiftOInteger (S# i#) = S# (word2Int# (shiftToOdd# (int2Word# i#)))
#if __GLASGOW_HASKELL__ < 709
shiftOInteger n@(J# _ ba#) = case count 0# 0# of
#else
shiftOInteger n@(Jn# bn#) = case bigNatZeroCount bn# of
0# -> n
z# -> n `shiftRInteger` z#
shiftOInteger n@(Jp# bn#) = case bigNatZeroCount bn# of
#endif
0# -> n
z# -> n `shiftRInteger` z#
#if __GLASGOW_HASKELL__ < 709
where
count a# i# =
case indexWordArray# ba# i# of
0## -> count (a# +# WORD_SIZE_IN_BITS#) (i# +# 1#)
w# -> a# +# trailZeros# w#
#endif
shiftToOdd# :: Word# -> Word#
shiftToOdd# w# = case trailZeros# w# of
k# -> uncheckedShiftRL# w# k#
shiftToOddCount# :: Word# -> (# Int#, Word# #)
shiftToOddCount# w# = case trailZeros# w# of
k# -> (# k#, uncheckedShiftRL# w# k# #)
bitCountWord# :: Word# -> Int#
bitCountWord# w# = case bitCountWord (W# w#) of
I# i# -> i#
bitCountWord :: Word -> Int
bitCountWord = popCount
bitCountInt :: Int -> Int
bitCountInt = popCount
trailZeros# :: Word# -> Int#
trailZeros# w =
case xor# w (w `minusWord#` 1##) `uncheckedShiftRL#` 1# of
v0 ->
case v0 `minusWord#` (uncheckedShiftRL# v0 1# `and#` m5##) of
v1 ->
case (v1 `and#` m3##) `plusWord#` (uncheckedShiftRL# v1 2# `and#` m3##) of
v2 ->
case (v2 `plusWord#` uncheckedShiftRL# v2 4#) `and#` mf## of
v3 -> word2Int# (uncheckedShiftRL# (v3 `timesWord#` m1##) sd#)
splitOff :: Integer -> Integer -> (Int, Integer)
splitOff _ 0 = (0, 0)
splitOff p n = go 0 n
where
go !k m = case m `quotRem` p of
(q, 0) -> go (k + 1) q
_ -> (k, m)
splitOff# :: Word# -> Word# -> (# Int#, Word# #)
splitOff# _ 0## = (# 0#, 0## #)
splitOff# p n = go 0# n
where
go k m = case m `quotRemWord#` p of
(# q, 0## #) -> go (k +# 1#) q
_ -> (# k, m #)