-- | -- Module: Math.NumberTheory.GaussianIntegers -- Copyright: (c) 2016 Chris Fredrickson, Google Inc. -- Licence: MIT -- Maintainer: Chris Fredrickson -- Stability: Provisional -- Portability: Non-portable (GHC extensions) -- -- This module exports functions for manipulating Gaussian integers, including -- computing their prime factorisations. -- {-# LANGUAGE BangPatterns #-} {-# LANGUAGE DeriveGeneric #-} module Math.NumberTheory.Quadratic.GaussianIntegers ( GaussianInteger(..), ι, conjugate, norm, (.^), isPrime, primes, gcdG, gcdG', findPrime, findPrime', factorise, ) where import Control.DeepSeq (NFData) import Data.List (mapAccumL, partition) import Data.Maybe (fromMaybe) import Data.Ord (comparing) import GHC.Generics import qualified Math.NumberTheory.Euclidean as ED import Math.NumberTheory.Moduli.Sqrt import Math.NumberTheory.Powers (integerSquareRoot) import Math.NumberTheory.Primes.Types (PrimeNat(..)) import qualified Math.NumberTheory.Primes.Factorisation as Factorisation import qualified Math.NumberTheory.Primes.Sieve as Sieve import qualified Math.NumberTheory.Primes.Testing as Testing import Math.NumberTheory.Utils (mergeBy) import Math.NumberTheory.Utils.FromIntegral (integerToNatural) infix 6 :+ infixr 8 .^ -- |A Gaussian integer is a+bi, where a and b are both integers. data GaussianInteger = (:+) { real :: !Integer, imag :: !Integer } deriving (Eq, Ord, Generic) instance NFData GaussianInteger -- |The imaginary unit, where -- -- > ι .^ 2 == -1 ι :: GaussianInteger ι = 0 :+ 1 instance Show GaussianInteger where show (a :+ b) | b == 0 = show a | a == 0 = s ++ b' | otherwise = show a ++ op ++ b' where b' = if abs b == 1 then "ι" else show (abs b) ++ "*ι" op = if b > 0 then "+" else "-" s = if b > 0 then "" else "-" instance Num GaussianInteger where (+) (a :+ b) (c :+ d) = (a + c) :+ (b + d) (*) (a :+ b) (c :+ d) = (a * c - b * d) :+ (a * d + b * c) abs = fst . absSignum negate (a :+ b) = (-a) :+ (-b) fromInteger n = n :+ 0 signum = snd . absSignum absSignum :: GaussianInteger -> (GaussianInteger, GaussianInteger) absSignum z@(a :+ b) | a == 0 && b == 0 = (z, 0) -- origin | a > 0 && b >= 0 = (z, 1) -- first quadrant: (0, inf) x [0, inf)i | a <= 0 && b > 0 = (b :+ (-a), ι) -- second quadrant: (-inf, 0] x (0, inf)i | a < 0 && b <= 0 = ((-a) :+ (-b), -1) -- third quadrant: (-inf, 0) x (-inf, 0]i | otherwise = ((-b) :+ a, -ι) -- fourth quadrant: [0, inf) x (-inf, 0)i instance ED.Euclidean GaussianInteger where quotRem = divHelper quot divMod = divHelper div divHelper :: (Integer -> Integer -> Integer) -> GaussianInteger -> GaussianInteger -> (GaussianInteger, GaussianInteger) divHelper divide g h = let nr :+ ni = g * conjugate h denom = norm h q = divide nr denom :+ divide ni denom p = h * q in (q, g - p) -- |Conjugate a Gaussian integer. conjugate :: GaussianInteger -> GaussianInteger conjugate (r :+ i) = r :+ (-i) -- |The square of the magnitude of a Gaussian integer. norm :: GaussianInteger -> Integer norm (x :+ y) = x * x + y * y -- |Compute whether a given Gaussian integer is prime. isPrime :: GaussianInteger -> Bool isPrime g@(x :+ y) | x == 0 && y /= 0 = abs y `mod` 4 == 3 && Testing.isPrime y | y == 0 && x /= 0 = abs x `mod` 4 == 3 && Testing.isPrime x | otherwise = Testing.isPrime $ norm g -- |An infinite list of the Gaussian primes. Uses primes in Z to exhaustively -- generate all Gaussian primes (up to associates), in order of ascending -- magnitude. primes :: [GaussianInteger] primes = (1 :+ 1): mergeBy (comparing norm) l r where (leftPrimes, rightPrimes) = partition (\p -> p `mod` 4 == 3) (tail Sieve.primes) l = [p :+ 0 | p <- leftPrimes] r = [g | p <- rightPrimes, let x :+ y = findPrime p, g <- [x :+ y, y :+ x]] -- | Compute the GCD of two Gaussian integers. Result is always -- in the first quadrant. gcdG :: GaussianInteger -> GaussianInteger -> GaussianInteger gcdG = ED.gcd {-# DEPRECATED gcdG "Use 'Math.NumberTheory.Euclidean.gcd' instead." #-} gcdG' :: GaussianInteger -> GaussianInteger -> GaussianInteger gcdG' = ED.gcd {-# DEPRECATED gcdG' "Use 'Math.NumberTheory.Euclidean.gcd' instead." #-} -- |Find a Gaussian integer whose norm is the given prime number -- of form 4k + 1 using -- . findPrime :: Integer -> GaussianInteger findPrime p = case sqrtsModPrime (-1) (PrimeNat . integerToNatural $ p) of [] -> error "findPrime: an argument must be prime p = 4k + 1" z : _ -> go p z -- Effectively we calculate gcdG' (p :+ 0) (z :+ 1) where sqrtp :: Integer sqrtp = integerSquareRoot p go :: Integer -> Integer -> GaussianInteger go g h | g <= sqrtp = g :+ h | otherwise = go h (g `mod` h) findPrime' :: Integer -> GaussianInteger findPrime' = findPrime {-# DEPRECATED findPrime' "Use 'findPrime' instead." #-} -- |Raise a Gaussian integer to a given power. (.^) :: (Integral a) => GaussianInteger -> a -> GaussianInteger a .^ e | e < 0 && norm a == 1 = case a of 1 :+ 0 -> 1 (-1) :+ 0 -> if even e then 1 else (-1) 0 :+ 1 -> (0 :+ (-1)) .^ (abs e `mod` 4) _ -> (0 :+ 1) .^ (abs e `mod` 4) | e < 0 = error "Cannot exponentiate non-unit Gaussian Int to negative power" | a == 0 = 0 | e == 0 = 1 | even e = s * s | otherwise = a * a .^ (e - 1) where s = a .^ div e 2 {-# DEPRECATED (.^) "Use (^) instead." #-} -- |Compute the prime factorisation of a Gaussian integer. This is unique up to units (+/- 1, +/- i). -- Unit factors are not included in the result. factorise :: GaussianInteger -> [(GaussianInteger, Int)] factorise g = concat $ snd $ mapAccumL go g (Factorisation.factorise $ norm g) where go :: GaussianInteger -> (Integer, Int) -> (GaussianInteger, [(GaussianInteger, Int)]) go z (2, e) = (divideByTwo z, [(1 :+ 1, e)]) go z (p, e) | p `mod` 4 == 3 = let e' = e `quot` 2 in (z `quotI` (p ^ e'), [(p :+ 0, e')]) | otherwise = (z', filter ((> 0) . snd) [(gp, k), (gp', k')]) where gp = findPrime p (k, k', z') = divideByPrime gp p e z gp' = abs (conjugate gp) -- | Remove all (1:+1) factors from the argument, -- avoiding complex division. divideByTwo :: GaussianInteger -> GaussianInteger divideByTwo z@(x :+ y) | even x, even y = divideByTwo $ z `quotI` 2 | odd x, odd y = (x - y) `quot` 2 :+ (x + y) `quot` 2 | otherwise = z -- | Remove p and conj p factors from the argument, -- avoiding complex division. divideByPrime :: GaussianInteger -- ^ Gaussian prime p -> Integer -- ^ Precomputed norm of p, of form 4k + 1 -> Int -- ^ Expected number of factors (either p or conj p) -- in Gaussian integer z -> GaussianInteger -- ^ Gaussian integer z -> ( Int -- Multiplicity of factor p in z , Int -- Multiplicity of factor conj p in z , GaussianInteger -- Remaining Gaussian integer ) divideByPrime p np k = go k 0 where go :: Int -> Int -> GaussianInteger -> (Int, Int, GaussianInteger) go 0 d z = (d, d, z) go c d z | c >= 2 , Just z' <- z `quotEvenI` np = go (c - 2) (d + 1) z' go c d z = (d + d1, d + d2, z'') where (d1, z') = go1 c 0 z d2 = c - d1 z'' = head $ drop d2 $ iterate (\g -> fromMaybe err $ (g * p) `quotEvenI` np) z' go1 :: Int -> Int -> GaussianInteger -> (Int, GaussianInteger) go1 0 d z = (d, z) go1 c d z | Just z' <- (z * conjugate p) `quotEvenI` np = go1 (c - 1) (d + 1) z' | otherwise = (d, z) err = error $ "divideByPrime: malformed arguments" ++ show (p, np, k) quotI :: GaussianInteger -> Integer -> GaussianInteger quotI (x :+ y) n = (x `quot` n :+ y `quot` n) quotEvenI :: GaussianInteger -> Integer -> Maybe GaussianInteger quotEvenI (x :+ y) n | xr == 0 , yr == 0 = Just (xq :+ yq) | otherwise = Nothing where (xq, xr) = x `quotRem` n (yq, yr) = y `quotRem` n