-- | -- Module: Math.NumberTheory.Euclidean.Coprimes -- Copyright: (c) 2017-2018 Andrew Lelechenko -- Licence: MIT -- Maintainer: Andrew Lelechenko -- -- Container for pairwise coprime numbers. {-# LANGUAGE CPP #-} {-# LANGUAGE ScopedTypeVariables #-} module Math.NumberTheory.Euclidean.Coprimes ( splitIntoCoprimes , Coprimes , unCoprimes , singleton , insert ) where import Prelude hiding (gcd, quot, rem) import Data.Coerce import Data.List (tails, mapAccumL) #if __GLASGOW_HASKELL__ < 803 import Data.Semigroup #endif import Math.NumberTheory.Euclidean -- | A list of pairwise coprime numbers -- with their multiplicities. newtype Coprimes a b = Coprimes { unCoprimes :: [(a, b)] -- ^ Unwrap. } deriving (Eq, Show) doPair :: (Euclidean a, Eq b, Num b) => a -> b -> a -> b -> (a, a, [(a, b)]) doPair x xm y ym = case gcd x y of 1 -> (x, y, []) g -> (x', y', concat rests) where (x', g', xgs) = doPair (x `quot` g) xm g (xm + ym) xgs' = if g' == 1 then xgs else ((g', xm + ym) : xgs) (y', rests) = mapAccumL go (y `quot` g) xgs' go w (t, tm) = (w', if t' == 1 then acc else (t', tm) : acc) where (w', t', acc) = doPair w ym t tm _propDoPair :: (Euclidean a, Integral b) => a -> b -> a -> b -> Bool _propDoPair x xm y ym = x `rem` x' == 0 && y `rem` y' == 0 && coprime x' y' && all (coprime x') (map fst rest) && all (coprime y') (map fst rest) && all (/= 1) (map fst rest) && and [ coprime s t | (s, _) : ts <- tails rest, (t, _) <- ts ] && (x ^ xm) * (y ^ ym) == (x' ^ xm) * (y' ^ ym) * product (map (\(r, k) -> r ^ k) rest) where (x', y', rest) = doPair x xm y ym insertInternal :: forall a b. (Euclidean a, Eq b, Num b) => a -> b -> Coprimes a b -> (Coprimes a b, Coprimes a b) insertInternal 0 _ = const (Coprimes [(0, 1)], Coprimes []) insertInternal xx xm = coerce (go ([], []) xx) where go :: ([(a, b)], [(a, b)]) -> a -> [(a, b)] -> ([(a, b)], [(a, b)]) go (old, new) 1 rest = (rest ++ old, new) go (old, new) x [] = (old, (x, xm) : new) go _ _ ((0, _) : _) = ([(0, 1)], []) go (old, new) x ((y, ym) : rest) | y' == 1 = go (old, xys ++ new) x' rest | otherwise = go ((y', ym) : old, xys ++ new) x' rest where (x', y', xys) = doPair x xm y ym -- | Wrap a non-zero number with its multiplicity into 'Coprimes'. -- -- >>> singleton 210 1 -- Coprimes {unCoprimes = [(210,1)]} singleton :: (Eq a, Num a, Eq b, Num b) => a -> b -> Coprimes a b singleton 0 0 = Coprimes [] singleton 1 _ = Coprimes [] singleton a b = Coprimes [(a, b)] -- | Add a non-zero number with its multiplicity to 'Coprimes'. -- -- >>> insert 360 1 (singleton 210 1) -- Coprimes {unCoprimes = [(7,1),(5,2),(3,3),(2,4)]} -- >>> insert 2 4 (insert 7 1 (insert 5 2 (singleton 4 3))) -- Coprimes {unCoprimes = [(7,1),(5,2),(2,10)]} insert :: (Euclidean a, Eq b, Num b) => a -> b -> Coprimes a b -> Coprimes a b insert x xm ys = Coprimes $ unCoprimes zs <> unCoprimes ws where (zs, ws) = insertInternal x xm ys instance (Euclidean a, Eq b, Num b) => Semigroup (Coprimes a b) where (Coprimes xs) <> ys = Coprimes $ unCoprimes zs <> foldMap unCoprimes wss where (zs, wss) = mapAccumL (\vs (x, xm) -> insertInternal x xm vs) ys xs instance (Euclidean a, Eq b, Num b) => Monoid (Coprimes a b) where mempty = Coprimes [] mappend = (<>) -- | The input list is assumed to be a factorisation of some number -- into a list of powers of (possibly, composite) non-zero factors. The output -- list is a factorisation of the same number such that all factors -- are coprime. Such transformation is crucial to continue factorisation -- (lazily, in parallel or concurrent fashion) without -- having to merge multiplicities of primes, which occurs more than in one -- composite factor. -- -- >>> splitIntoCoprimes [(140, 1), (165, 1)] -- Coprimes {unCoprimes = [(28,1),(33,1),(5,2)]} -- >>> splitIntoCoprimes [(360, 1), (210, 1)] -- Coprimes {unCoprimes = [(7,1),(5,2),(3,3),(2,4)]} splitIntoCoprimes :: (Euclidean a, Eq b, Num b) => [(a, b)] -> Coprimes a b splitIntoCoprimes = foldl (\acc (x, xm) -> insert x xm acc) mempty