-- | -- Module: Math.NumberTheory.Primes.Testing.Probabilistic -- Copyright: (c) 2011 Daniel Fischer, 2017 Andrew Lelechenko -- Licence: MIT -- Maintainer: Daniel Fischer -- -- Probabilistic primality tests, Miller-Rabin and Baillie-PSW. {-# LANGUAGE CPP, MagicHash, BangPatterns #-} {-# OPTIONS_HADDOCK hide #-} module Math.NumberTheory.Primes.Testing.Probabilistic ( isPrime , millerRabinV , bailliePSW , isStrongFermatPP , isFermatPP , lucasTest ) where #include "MachDeps.h" import Data.Bits import GHC.Base import GHC.Integer.GMP.Internals import GHC.TypeNats.Compat import Math.NumberTheory.Moduli.Class import Math.NumberTheory.Moduli.Jacobi import Math.NumberTheory.Utils import Math.NumberTheory.Powers.Squares -- | @isPrime n@ tests whether @n@ is a prime (negative or positive). -- It is a combination of trial division and Baillie-PSW test. -- -- If @isPrime n@ returns @False@ then @n@ is definitely composite. -- There is a theoretical possibility that @isPrime n@ is @True@, -- but in fact @n@ is not prime. However, no such numbers are known -- and none exist below @2^64@. If you have found one, please report it, -- because it is a major discovery. isPrime :: Integer -> Bool isPrime n | n < 0 = isPrime (-n) | n < 2 = False | n < 4 = True | otherwise = millerRabinV 0 n -- trial division test && bailliePSW n -- | Miller-Rabin probabilistic primality test. It consists of the trial -- division test and several rounds of the strong Fermat test with different -- bases. The choice of trial divisors and bases are -- implementation details and may change in future silently. -- -- First argument stands for the number of rounds of strong Fermat test. -- If it is 0, only trial division test is performed. -- -- If @millerRabinV k n@ returns @False@ then @n@ is definitely composite. -- Otherwise @n@ may appear composite with probability @1/4^k@. millerRabinV :: Int -> Integer -> Bool millerRabinV (I# k) n = case testPrimeInteger n k of 0# -> False _ -> True -- | @'isStrongFermatPP' n b@ tests whether non-negative @n@ is -- a strong Fermat probable prime for base @b@. -- -- Apart from primes, also some composite numbers have the tested -- property, but those are rare. Very rare are composite numbers -- having the property for many bases, so testing a large prime -- candidate with several bases can identify composite numbers -- with high probability. An odd number @n > 3@ is prime if and -- only if @'isStrongFermatPP' n b@ holds for all @b@ with -- @2 <= b <= (n-1)/2@, but of course checking all those bases -- would be less efficient than trial division, so one normally -- checks only a relatively small number of bases, depending on -- the desired degree of certainty. The probability that a randomly -- chosen base doesn't identify a composite number @n@ is less than -- @1/4@, so five to ten tests give a reasonable level of certainty -- in general. -- -- Please consult -- for the best choice of bases. isStrongFermatPP :: Integer -> Integer -> Bool isStrongFermatPP n b | n < 0 = error "isStrongFermatPP: negative argument" | n <= 1 = False | n == 2 = True | otherwise = case b `modulo` fromInteger n of SomeMod b' -> isStrongFermatPPMod b' InfMod{} -> True isStrongFermatPPMod :: KnownNat n => Mod n -> Bool isStrongFermatPPMod b = b == 0 || a == 1 || go t a where m = -1 (t, u) = shiftToOddCount $ getVal m a = b ^% u go 0 _ = False go k x = x == m || go (k - 1) (x * x) -- | @'isFermatPP' n b@ tests whether @n@ is a Fermat probable prime -- for the base @b@, that is, whether @b^(n-1) `mod` n == 1@. -- This is a weaker but simpler condition. However, more is lost -- in strength than is gained in simplicity, so for primality testing, -- the strong check should be used. The remarks about -- the choice of bases to test from @'isStrongFermatPP'@ apply -- with the modification that if @a@ and @b@ are Fermat bases -- for @n@, then @a*b@ /always/ is a Fermat base for @n@ too. -- A /Charmichael number/ is a composite number @n@ which is a -- Fermat probable prime for all bases @b@ coprime to @n@. By the -- above, only primes @p <= n/2@ not dividing @n@ need to be tested -- to identify Carmichael numbers (however, testing all those -- primes would be less efficient than determining Carmichaelness -- from the prime factorisation; but testing an appropriate number -- of prime bases is reasonable to find out whether it's worth the -- effort to undertake the prime factorisation). isFermatPP :: Integer -> Integer -> Bool isFermatPP n b = case b `modulo` fromInteger n of SomeMod b' -> b' ^% (n-1) == 1 InfMod{} -> True -- | Primality test after Baillie, Pomerance, Selfridge and Wagstaff. -- The Baillie-PSW test consists of a strong Fermat probable primality -- test followed by a (strong) Lucas primality test. This implementation -- assumes that the number @n@ to test is odd and larger than @3@. -- Even and small numbers have to be handled before. Also, before -- applying this test, trial division by small primes should be performed -- to identify many composites cheaply (although the Baillie-PSW test is -- rather fast, about the same speed as a strong Fermat test for four or -- five bases usually, it is, for large numbers, much more costly than -- trial division by small primes, the primes less than @1000@, say, so -- eliminating numbers with small prime factors beforehand is more efficient). -- -- The Baillie-PSW test is very reliable, so far no composite numbers -- passing it are known, and it is known (Gilchrist 2010) that no -- Baillie-PSW pseudoprimes exist below @2^64@. However, a heuristic argument -- by Pomerance indicates that there are likely infinitely many Baillie-PSW -- pseudoprimes. On the other hand, according to -- there is -- reason to believe that there are none with less than several -- thousand digits, so that for most use cases the test can be -- considered definitive. bailliePSW :: Integer -> Bool bailliePSW n = isStrongFermatPP n 2 && lucasTest n -- precondition: n odd, > 3 (no small prime factors, typically large) -- | The Lucas-Selfridge test, including square-check, but without -- the Fermat test. For package-internal use only. lucasTest :: Integer -> Bool lucasTest n | square || d == 0 = False | d == 1 = True | otherwise = uo == 0 || go t vo qo where square = isPossibleSquare2 n && r*r == n r = integerSquareRoot n d = find True 5 find !pos cd = case jacobi (n `rem` cd) cd of MinusOne -> if pos then cd else (-cd) Zero -> if cd == n then 1 else 0 One -> find (not pos) (cd+2) q = (1-d) `quot` 4 (t,o) = shiftToOddCount (n+1) (uo, vo, qo) = testLucas n q o go 0 _ _ = False go s vn qn = vn == 0 || go (s-1) ((vn*vn-2*qn) `rem` n) ((qn*qn) `rem` n) -- n odd positive, n > abs q, index odd testLucas :: Integer -> Integer -> Integer -> (Integer, Integer, Integer) testLucas n q (S# i#) = look (WORD_SIZE_IN_BITS - 2) where j = I# i# look k | testBit j k = go (k-1) 1 1 1 q | otherwise = look (k-1) go k un un1 vn qn | k < 0 = (un, vn, qn) | testBit j k = go (k-1) u2n1 u2n2 v2n1 q2n1 | otherwise = go (k-1) u2n u2n1 v2n q2n where u2n = (un*vn) `rem` n u2n1 = (un1*vn-qn) `rem` n u2n2 = ((un1-q*un)*vn-qn) `rem` n v2n = (vn*vn-2*qn) `rem` n v2n1 = ((un1 - (2*q)*un)*vn-qn) `rem` n q2n = (qn*qn) `rem` n q2n1 = (qn*qn*q) `rem` n testLucas n q (Jp# bn#) = test (s# -# 1#) where s# = sizeofBigNat# bn# test j# = case indexBigNat# bn# j# of 0## -> test (j# -# 1#) w# -> look (j# -# 1#) (W# w#) (WORD_SIZE_IN_BITS - 1) look j# w i | testBit w i = go j# w (i - 1) 1 1 1 q | otherwise = look j# w (i-1) go k# w i un un1 vn qn | i < 0 = if isTrue# (k# <# 0#) then (un,vn,qn) else go (k# -# 1#) (W# (indexBigNat# bn# k#)) (WORD_SIZE_IN_BITS - 1) un un1 vn qn | testBit w i = go k# w (i-1) u2n1 u2n2 v2n1 q2n1 | otherwise = go k# w (i-1) u2n u2n1 v2n q2n where u2n = (un*vn) `rem` n u2n1 = (un1*vn-qn) `rem` n u2n2 = ((un1-q*un)*vn-qn) `rem` n v2n = (vn*vn-2*qn) `rem` n v2n1 = ((un1 - (2*q)*un)*vn-qn) `rem` n q2n = (qn*qn) `rem` n q2n1 = (qn*qn*q) `rem` n -- Listed as a precondition of lucasTest testLucas _ _ _ = error "lucasTest: negative argument"