{-# LANGUAGE BangPatterns, MagicHash, UnboxedTuples, CPP #-} -- | This should be the most efficient implementation of atomic counters. -- You probably don't need the others! (Except for testing/debugging.) module Data.Atomics.Counter.Unboxed (AtomicCounter, CTicket, newCounter, readCounterForCAS, readCounter, peekCTicket, writeCounter, casCounter, incrCounter, incrCounter_) where import GHC.Ptr import Data.Atomics (casByteArrayInt) -- import Data.Atomics.Internal (casIntArray#, fetchAddIntArray#) import Data.Atomics.Internal #if MIN_VERSION_base(4,7,0) import GHC.Base hiding ((==#)) import GHC.Prim hiding ((==#)) import qualified GHC.PrimopWrappers as GPW #else import GHC.Base import GHC.Prim #endif -- GHC 7.8 changed some primops #if MIN_VERSION_base(4,7,0) (==#) :: Int# -> Int# -> Bool (==#) x y = case x GPW.==# y of { 0# -> False; _ -> True } #endif #ifndef __GLASGOW_HASKELL__ #error "Unboxed Counter: this library is not portable to other Haskell's" #endif #include "MachDeps.h" #ifndef SIZEOF_HSINT #define SIZEOF_HSINT INT_SIZE_IN_BYTES #endif -- | The type of mutable atomic counters. data AtomicCounter = AtomicCounter (MutableByteArray# RealWorld) -- | You should not depend on this type. It varies between different implementations -- of atomic counters. type CTicket = Int -- TODO: Could newtype this. -- | Create a new counter initialized to the given value. {-# INLINE newCounter #-} newCounter :: Int -> IO AtomicCounter newCounter n = do c <- newRawCounter writeCounter c n -- Non-atomic is ok; it hasn't been released into the wild. return c -- | Create a new, uninitialized counter. {-# INLINE newRawCounter #-} newRawCounter :: IO AtomicCounter newRawCounter = IO $ \s -> case newByteArray# size s of { (# s, arr #) -> (# s, AtomicCounter arr #) } where !(I# size) = SIZEOF_HSINT {-# INLINE readCounter #-} -- | Equivalent to `readCounterForCAS` followed by `peekCTicket`. readCounter :: AtomicCounter -> IO Int readCounter (AtomicCounter arr) = IO $ \s -> case readIntArray# arr 0# s of { (# s, i #) -> (# s, I# i #) } {-# INLINE writeCounter #-} -- | Make a non-atomic write to the counter. No memory-barrier. writeCounter :: AtomicCounter -> Int -> IO () writeCounter (AtomicCounter arr) (I# i) = IO $ \s -> case writeIntArray# arr 0# i s of { s -> (# s, () #) } {-# INLINE readCounterForCAS #-} -- | Just like the "Data.Atomics" CAS interface, this routine returns an opaque -- ticket that can be used in CAS operations. Except for the difference in return -- type, the semantics of this are the same as `readCounter`. readCounterForCAS :: AtomicCounter -> IO CTicket readCounterForCAS = readCounter {-# INLINE peekCTicket #-} -- | Opaque tickets cannot be constructed, but they can be destructed into values. peekCTicket :: CTicket -> Int peekCTicket !x = x {-# INLINE casCounter #-} -- | Compare and swap for the counter ADT. Similar behavior to -- `Data.Atomics.casIORef`, in particular, in both success and failure cases it -- returns a ticket that you should use for the next attempt. (That is, in the -- success case, it actually returns the new value that you provided as input, but in -- ticket form.) casCounter :: AtomicCounter -> CTicket -> Int -> IO (Bool, CTicket) -- casCounter (AtomicCounter barr) !old !new = casCounter (AtomicCounter mba#) (I# old#) newBox@(I# new#) = IO$ \s1# -> let (# s2#, res# #) = casIntArray# mba# 0# old# new# s1# in case res# ==# old# of False -> (# s2#, (False, I# res# ) #) -- Failure True -> (# s2#, (True , newBox ) #) -- Success {-# INLINE sameCTicket #-} sameCTicket :: CTicket -> CTicket -> Bool sameCTicket = (==) {-# INLINE incrCounter #-} -- | Increment the counter by a given amount. Returns the value AFTER the increment -- (in contrast with the behavior of the underlying instruction on architectures -- like x86.) -- -- Note that UNLIKE with boxed implementations of counters, where increment is -- based on CAS, this increment is /O(1)/. Fetch-and-add does not require a retry -- loop like CAS. incrCounter :: Int -> AtomicCounter -> IO Int incrCounter (I# incr#) (AtomicCounter mba#) = IO $ \ s1# -> let (# s2#, res #) = fetchAddIntArray# mba# 0# incr# s1# in (# s2#, (I# res) #) {-# INLINE incrCounter_ #-} -- | An alternate version for when you don't care about the old value. incrCounter_ :: Int -> AtomicCounter -> IO () incrCounter_ (I# incr#) (AtomicCounter mba#) = IO $ \ s1# -> let (# s2#, res #) = fetchAddIntArray# mba# 0# incr# s1# in (# s2#, () #)