----------------------------------------------------------------------------- -- | -- Module : Text.Parsec.Expr -- Copyright : (c) Daan Leijen 1999-2001, (c) Paolo Martini 2007 -- License : BSD-style (see the LICENSE file) -- -- Author : derek.a.elkins@gmail.com -- Ported by : Sebastiaan Visser <haskell@fvisser.nl> -- Stability : provisional -- Portability : non-portable -- -- A helper module to parse \"expressions\". -- Builds a parser given a table of operators and associativities. -- ----------------------------------------------------------------------------- module Data.Attoparsec.Expr ( Assoc(..), Operator(..), OperatorTable , buildExpressionParser ) where import Control.Applicative import Data.Monoid import Data.Attoparsec.Combinator import Data.Attoparsec.Types ----------------------------------------------------------- -- Assoc and OperatorTable ----------------------------------------------------------- -- | This data type specifies the associativity of operators: left, right -- or none. data Assoc = AssocNone | AssocLeft | AssocRight -- | This data type specifies operators that work on values of type @a@. -- An operator is either binary infix or unary prefix or postfix. A -- binary operator has also an associated associativity. data Operator t a = Infix (Parser t (a -> a -> a)) Assoc | Prefix (Parser t (a -> a)) | Postfix (Parser t (a -> a)) -- | An @OperatorTable@ is a list of @Operator@ -- lists. The list is ordered in descending -- precedence. All operators in one list have the same precedence (but -- may have a different associativity). type OperatorTable t a = [[Operator t a]] ----------------------------------------------------------- -- Convert an OperatorTable and basic term parser into -- a full fledged expression parser ----------------------------------------------------------- -- | @buildExpressionParser table term@ builds an expression parser for -- terms @term@ with operators from @table@, taking the associativity -- and precedence specified in @table@ into account. Prefix and postfix -- operators of the same precedence can only occur once (i.e. @--2@ is -- not allowed if @-@ is prefix negate). Prefix and postfix operators -- of the same precedence associate to the left (i.e. if @++@ is -- postfix increment, than @-2++@ equals @-1@, not @-3@). -- -- The @buildExpressionParser@ takes care of all the complexity -- involved in building expression parser. Here is an example of an -- expression parser that handles prefix signs, postfix increment and -- basic arithmetic. -- -- > expr = buildExpressionParser table term -- > <?> "expression" -- > -- > term = parens expr -- > <|> natural -- > <?> "simple expression" -- > -- > table = [ [prefix "-" negate, prefix "+" id ] -- > , [postfix "++" (+1)] -- > , [binary "*" (*) AssocLeft, binary "/" (div) AssocLeft ] -- > , [binary "+" (+) AssocLeft, binary "-" (-) AssocLeft ] -- > ] -- > -- > binary name fun assoc = Infix (do{ reservedOp name; return fun }) assoc -- > prefix name fun = Prefix (do{ reservedOp name; return fun }) -- > postfix name fun = Postfix (do{ reservedOp name; return fun }) buildExpressionParser :: Monoid t => [[Operator t b]] -> Parser t b -> Parser t b buildExpressionParser operators simpleExpr = foldl makeParser simpleExpr operators where makeParser term ops = let (rassoc,lassoc,nassoc ,prefix,postfix) = foldr splitOp ([],[],[],[],[]) ops rassocOp = choice rassoc lassocOp = choice lassoc nassocOp = choice nassoc prefixOp = choice prefix postfixOp = choice postfix ambigious assoc op= do{ _ <- op; fail ("ambiguous use of a " ++ assoc ++ " associative operator") } ambigiousRight = ambigious "right" rassocOp ambigiousLeft = ambigious "left" lassocOp ambigiousNon = ambigious "non" nassocOp termP = do{ pre <- prefixP ; x <- term ; post <- postfixP ; return (post (pre x)) } postfixP = postfixOp <|> return id prefixP = prefixOp <|> return id rassocP x = do{ f <- rassocOp ; y <- do{ z <- termP; rassocP1 z } ; return (f x y) } <|> ambigiousLeft <|> ambigiousNon -- <|> return x rassocP1 x = rassocP x <|> return x lassocP x = do{ f <- lassocOp ; y <- termP ; lassocP1 (f x y) } <|> ambigiousRight <|> ambigiousNon -- <|> return x lassocP1 x = lassocP x <|> return x nassocP x = do{ f <- nassocOp ; y <- termP ; ambigiousRight <|> ambigiousLeft <|> ambigiousNon <|> return (f x y) } -- <|> return x in do{ x <- termP ; rassocP x <|> lassocP x <|> nassocP x <|> return x } splitOp (Infix op assoc) (rassoc,lassoc,nassoc,prefix,postfix) = case assoc of AssocNone -> (rassoc,lassoc,op:nassoc,prefix,postfix) AssocLeft -> (rassoc,op:lassoc,nassoc,prefix,postfix) AssocRight -> (op:rassoc,lassoc,nassoc,prefix,postfix) splitOp (Prefix op) (rassoc,lassoc,nassoc,prefix,postfix) = (rassoc,lassoc,nassoc,op:prefix,postfix) splitOp (Postfix op) (rassoc,lassoc,nassoc,prefix,postfix) = (rassoc,lassoc,nassoc,prefix,op:postfix)