{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE ViewPatterns #-} -- | This module lets us derive Haskell types from an Avro schema that -- can be serialized/deserialzed to Avro. module Data.Avro.Deriving ( -- * Deriving options DeriveOptions(..) , FieldStrictness(..) , FieldUnpackedness(..) , NamespaceBehavior(..) , defaultDeriveOptions , mkPrefixedFieldName , mkAsIsFieldName , mkLazyField , mkStrictPrimitiveField -- * Deriving Haskell types from Avro schema , makeSchema , makeSchemaFrom , deriveAvroWithOptions , deriveAvroWithOptions' , deriveFromAvroWithOptions , deriveAvro , deriveAvro' , deriveFromAvro ) where import Control.Monad (join) import Data.Aeson (eitherDecode) import qualified Data.Aeson as J import Data.Avro hiding (decode, encode) import Data.Avro.Schema as S import qualified Data.Avro.Types as AT import Data.ByteString (ByteString) import qualified Data.ByteString as B import Data.Char (isAlphaNum) import Data.Int import Data.List.NonEmpty (NonEmpty ((:|))) import qualified Data.List.NonEmpty as NE import Data.Map (Map) import Data.Maybe (fromMaybe) import Data.Semigroup ((<>)) import qualified Data.Text as Text import GHC.Generics (Generic) import Language.Haskell.TH as TH hiding (notStrict) import Language.Haskell.TH.Lib as TH hiding (notStrict) import Language.Haskell.TH.Syntax import Data.Avro.Deriving.NormSchema import Data.Avro.EitherN import qualified Data.ByteString as BS import qualified Data.ByteString.Lazy as LBS import qualified Data.ByteString.Lazy.Char8 as LBSC8 import qualified Data.HashMap.Strict as HM import qualified Data.Set as S import Data.Text (Text) import qualified Data.Text as T import qualified Data.Vector as V -- | How to treat Avro namespaces in the generated Haskell types. data NamespaceBehavior = IgnoreNamespaces -- ^ Namespaces are ignored completely. Haskell identifiers are -- generated from types' base names. This produces nicer types but -- fails on valid Avro schemas where the same base name occurs in -- different namespaces. -- -- The Avro type @com.example.Foo@ would generate the Haskell type -- @Foo@. If @Foo@ had a field called @bar@, the generated Haskell -- record would have a field called @fooBar@. | HandleNamespaces -- ^ Haskell types and field names are generated with -- namespaces. See 'deriveAvroWithNamespaces' for an example of -- how this works. -- -- The Avro type @com.example.Foo@ would generate the Haskell type -- @Com'example'Foo@. If @Foo@ had a field called @bar@, the -- generated Haskell record would have the field -- @com'example'FooBar@. -- | Describes the strictness of a field for a derived -- data type. The field will be derived as if it were -- written with a @!@. data FieldStrictness = StrictField | LazyField deriving Generic -- | Describes the representation of a field for a derived -- data type. The field will be derived as if it were written -- with an @{-# UNPACK #-}@ pragma. data FieldUnpackedness = UnpackedField | NonUnpackedField deriving Generic -- | Derives Avro from a given schema file. -- Generates data types, FromAvro and ToAvro instances. data DeriveOptions = DeriveOptions { -- | How to build field names for generated data types. The first -- argument is the type name to use as a prefix, rendered -- according to the 'namespaceBehavior' setting. fieldNameBuilder :: Text -> Field -> T.Text -- | Determines field representation of generated data types , fieldRepresentation :: TypeName -> Field -> (FieldStrictness, FieldUnpackedness) -- | Controls how we handle namespaces when defining Haskell type -- and field names. , namespaceBehavior :: NamespaceBehavior } deriving Generic -- | Default deriving options -- -- @ -- defaultDeriveOptions = 'DeriveOptions' -- { fieldNameBuilder = 'mkPrefixedFieldName' -- , fieldStrictness = 'mkLazyField' -- , namespaceBehavior = 'IgnoreNamespaces' -- } -- @ defaultDeriveOptions = DeriveOptions { fieldNameBuilder = mkPrefixedFieldName , fieldRepresentation = mkLazyField , namespaceBehavior = IgnoreNamespaces } -- | Generates a field name that is prefixed with the type name. -- -- For example, if the schema defines type 'Person' that has a field 'firstName', -- then the generated Haskell type will be like -- -- @ -- Person { personFirstName :: Text } -- @ mkPrefixedFieldName :: Text -> Field -> T.Text mkPrefixedFieldName prefix fld = sanitiseName $ updateFirst T.toLower prefix <> updateFirst T.toUpper (fldName fld) -- | Marks any field as non-strict in the generated data types. mkLazyField :: TypeName -> Field -> (FieldStrictness, FieldUnpackedness) mkLazyField _ _ = (LazyField, NonUnpackedField) -- | Make a field strict and unpacked if it has a primitive representation. -- Primitive types are types which GHC has either a static or an unlifted -- representation: `()`, `Boolean`, `Int32`, `Int64`, `Float`, `Double`. mkStrictPrimitiveField :: TypeName -> Field -> (FieldStrictness, FieldUnpackedness) mkStrictPrimitiveField _ field = if shouldStricten then (StrictField, unpackedness) else (LazyField, NonUnpackedField) where unpackedness = case S.fldType field of S.Null -> NonUnpackedField S.Boolean -> NonUnpackedField _ -> UnpackedField shouldStricten = case S.fldType field of S.Null -> True S.Boolean -> True S.Int -> True S.Long -> True S.Float -> True S.Double -> True _ -> False -- | Generates a field name that matches the field name in schema -- (sanitised for Haskell, so first letter is lower cased) -- -- For example, if the schema defines type 'Person' that has a field 'firstName', -- then the generated Haskell type will be like -- -- @ -- Person { firstName :: Text } -- @ -- You may want to enable 'DuplicateRecordFields' if you want to use this method. mkAsIsFieldName :: TypeName -> Field -> Text mkAsIsFieldName _ = sanitiseName . updateFirst T.toLower . fldName -- | Derives Haskell types from the given Avro schema file. These -- Haskell types support both reading and writing to Avro. -- -- For an Avro schema with a top-level record called -- @com.example.Foo@, this generates: -- -- * a 'Schema' with the name @schema'Foo@ or -- @schema'com'example'Foo@, depending on the 'namespaceBehavior' -- setting. -- -- * Haskell types for each named type defined in the schema -- * 'HasSchema' instances for each type -- * 'FromAvro' instances for each type -- * 'ToAvro' instances for each type -- -- This function ignores namespaces when generated Haskell type and -- field names. This will fail on valid Avro schemas which contain -- types with the same base name in different namespaces. It will also -- fail for schemas that contain types with base names that are the -- same except for the capitalization of the first letter. -- -- The type @com.example.Foo@ will generate a Haskell type @Foo@. If -- @com.example.Foo@ has a field named @Bar@, the field in the Haskell -- record will be called @fooBar@. deriveAvroWithOptions :: DeriveOptions -> FilePath -> Q [Dec] deriveAvroWithOptions o p = readSchema p >>= deriveAvroWithOptions' o -- | Derive Haskell types from the given Avro schema. -- -- For an Avro schema with a top-level definition @com.example.Foo@, this -- generates: -- -- * a 'Schema' with the name @schema'Foo@ or -- @schema'com'example'Foo@ depending on namespace handling -- -- * Haskell types for each named type defined in the schema -- * 'HasSchema' instances for each type -- * 'FromAvro' instances for each type -- * 'ToAvro' instances for each type deriveAvroWithOptions' :: DeriveOptions -> Schema -> Q [Dec] deriveAvroWithOptions' o s = do let schemas = extractDerivables s types <- traverse (genType o) schemas hasSchema <- traverse (genHasAvroSchema $ namespaceBehavior o) schemas fromAvros <- traverse (genFromAvro $ namespaceBehavior o) schemas toAvros <- traverse (genToAvro o) schemas pure $ join types <> join hasSchema <> join fromAvros <> join toAvros -- | Derives "read only" Avro from a given schema file. For a schema -- with a top-level definition @com.example.Foo@, this generates: -- -- * a 'Schema' value with the name @schema'Foo@ -- -- * Haskell types for each named type defined in the schema -- * 'HasSchema' instances for each type -- * 'FromAvro' instances for each type deriveFromAvroWithOptions :: DeriveOptions -> FilePath -> Q [Dec] deriveFromAvroWithOptions o p = readSchema p >>= deriveFromAvroWithOptions' o -- | Derive "read only" Haskell types from the given Avro schema with -- configurable behavior for handling namespaces. -- -- For an Avro schema with a top-level definition @com.example.Foo@, this -- generates: -- -- * a 'Schema' with the name @schema'Foo@ or -- @schema'com'example'Foo@ depending on namespace handling -- -- * Haskell types for each named type defined in the schema -- * 'HasSchema' instances for each type -- * 'FromAvro' instances for each type deriveFromAvroWithOptions' :: DeriveOptions -> Schema -> Q [Dec] deriveFromAvroWithOptions' o s = do let schemas = extractDerivables s types <- traverse (genType o) schemas hasSchema <- traverse (genHasAvroSchema $ namespaceBehavior o) schemas fromAvros <- traverse (genFromAvro $ namespaceBehavior o) schemas pure $ join types <> join hasSchema <> join fromAvros -- | Same as 'deriveAvroWithOptions' but uses 'defaultDeriveOptions' -- -- @ -- deriveAvro = 'deriveAvroWithOptions' 'defaultDeriveOptions' -- @ deriveAvro :: FilePath -> Q [Dec] deriveAvro = deriveAvroWithOptions defaultDeriveOptions -- | Same as 'deriveAvroWithOptions'' but uses 'defaultDeriveOptions' -- -- @ -- deriveAvro' = 'deriveAvroWithOptions'' 'defaultDeriveOptions' -- @ deriveAvro' :: Schema -> Q [Dec] deriveAvro' = deriveAvroWithOptions' defaultDeriveOptions -- | Same as 'deriveFromAvroWithOptions' but uses -- 'defaultDeriveOptions'. -- -- @ -- deriveFromAvro = deriveFromAvroWithOptions defaultDeriveOptions -- @ deriveFromAvro :: FilePath -> Q [Dec] deriveFromAvro = deriveFromAvroWithOptions defaultDeriveOptions -- | Generates the value of type 'Schema' that it can later be used with -- 'deriveAvro'' or 'deriveAvroWithOptions''. -- -- @ -- mySchema :: Schema -- mySchema = $(makeSchema "schemas/my-schema.avsc") -- @ makeSchema :: FilePath -> Q Exp makeSchema p = readSchema p >>= schemaDef' makeSchemaFrom :: FilePath -> Text -> Q Exp makeSchemaFrom p name = do s <- readSchema p case subdefinition s name of Nothing -> fail $ "No such entity '" <> T.unpack name <> "' defined in " <> p Just ss -> schemaDef' ss readSchema :: FilePath -> Q Schema readSchema p = do qAddDependentFile p mbSchema <- runIO $ decodeSchema p case mbSchema of Left err -> fail $ "Unable to generate AVRO for " <> p <> ": " <> err Right sch -> pure sch genFromAvro :: NamespaceBehavior -> Schema -> Q [Dec] genFromAvro namespaceBehavior (S.Enum n _ _ _ _) = [d| instance FromAvro $(conT $ mkDataTypeName namespaceBehavior n) where fromAvro (AT.Enum _ i _) = $([| pure . toEnum|]) i fromAvro value = $( [|\v -> badValue v $(mkTextLit $ S.renderFullname n)|] ) value |] genFromAvro namespaceBehavior (S.Record n _ _ _ fs) = [d| instance FromAvro $(conT $ mkDataTypeName namespaceBehavior n) where fromAvro (AT.Record _ r) = $(genFromAvroFieldsExp (mkDataTypeName namespaceBehavior n) fs) r fromAvro value = $( [|\v -> badValue v $(mkTextLit $ S.renderFullname n)|] ) value |] genFromAvro namespaceBehavior (S.Fixed n _ s) = [d| instance FromAvro $(conT $ mkDataTypeName namespaceBehavior n) where fromAvro (AT.Fixed _ v) | BS.length v == s = pure $ $(conE (mkDataTypeName namespaceBehavior n)) v fromAvro value = $( [|\v -> badValue v $(mkTextLit $ S.renderFullname n)|] ) value |] genFromAvro _ _ = pure [] genFromAvroFieldsExp :: Name -> [Field] -> Q Exp genFromAvroFieldsExp n [] = [| (return . return) $(conE n) |] genFromAvroFieldsExp n (x:xs) = [| \r -> $(let extract fld = [| r .: T.pack $(mkTextLit (fldName fld))|] ctor = [| $(conE n) <$> $(extract x) |] in foldl (\expr fld -> [| $expr <*> $(extract fld) |]) ctor xs ) |] genHasAvroSchema :: NamespaceBehavior -> Schema -> Q [Dec] genHasAvroSchema namespaceBehavior s = do let sname = mkSchemaValueName namespaceBehavior (name s) sdef <- schemaDef sname s idef <- hasAvroSchema sname pure (sdef <> idef) where hasAvroSchema sname = [d| instance HasAvroSchema $(conT $ mkDataTypeName namespaceBehavior (name s)) where schema = pure $(varE sname) |] newNames :: String -- ^ base name -> Int -- ^ count -> Q [Name] newNames base n = sequence [newName (base ++ show i) | i <- [1..n]] genToAvro :: DeriveOptions -> Schema -> Q [Dec] genToAvro opts s@(Enum n _ _ vs _) = toAvroInstance (mkSchemaValueName (namespaceBehavior opts) n) where conP' = flip conP [] . mkAdtCtorName (namespaceBehavior opts) n toAvroInstance sname = [d| instance ToAvro $(conT $ mkDataTypeName (namespaceBehavior opts) n) where toAvro = $([| \x -> let convert = AT.Enum $(varE sname) (fromEnum $([|x|])) in $(caseE [|x|] ((\v -> match (conP' v) (normalB [| convert (T.pack $(mkTextLit v))|]) []) <$> vs)) |]) |] genToAvro opts s@(Record n _ _ _ fs) = toAvroInstance (mkSchemaValueName (namespaceBehavior opts) n) where toAvroInstance sname = [d| instance ToAvro $(conT $ mkDataTypeName (namespaceBehavior opts) n) where toAvro = $(genToAvroFieldsExp sname) |] genToAvroFieldsExp sname = do names <- newNames "p_" (length fs) let con = conP (mkDataTypeName (namespaceBehavior opts) n) (varP <$> names) lamE [con] [| record $(varE sname) $(let assign (fld, n) = [| T.pack $(mkTextLit (fldName fld)) .= $(varE n) |] in listE $ assign <$> zip fs names ) |] genToAvro opts s@(Fixed n _ size) = toAvroInstance (mkSchemaValueName (namespaceBehavior opts) n) where toAvroInstance sname = [d| instance ToAvro $(conT $ mkDataTypeName (namespaceBehavior opts) n) where toAvro = $(do x <- newName "x" lamE [conP (mkDataTypeName (namespaceBehavior opts) n) [varP x]] [| AT.Fixed $(varE sname) $(varE x) |]) |] schemaDef :: Name -> Schema -> Q [Dec] schemaDef sname sch = setName sname $ [d| x :: Schema x = $(schemaDef' sch) |] schemaDef' :: S.Type -> ExpQ schemaDef' = mkSchema where mkSchema = \case Null -> [e| Null |] Boolean -> [e| Boolean |] Int -> [e| Int |] Long -> [e| Long |] Float -> [e| Float |] Double -> [e| Double |] Bytes -> [e| Bytes |] String -> [e| String |] Array item -> [e| Array $(mkSchema item) |] Map values -> [e| Map $(mkSchema values) |] NamedType name -> [e| NamedType $(mkName name) |] Record {..} -> [e| Record { name = $(mkName name) , aliases = $(ListE <$> mapM mkName aliases) , doc = $(mkMaybeText doc) , order = $(mkOrder order) , fields = $(ListE <$> mapM mkField fields) } |] Enum {..} -> [e| mkEnum $(mkName name) $(ListE <$> mapM mkName aliases) $(mkMaybeText doc) $(ListE <$> mapM mkText symbols) |] Union {..} -> [e| mkUnion $(mkNE options) |] Fixed {..} -> [e| Fixed { name = $(mkName name) , aliases = $(ListE <$> mapM mkName aliases) , size = $(litE $ IntegerL $ fromIntegral size) } |] mkText text = [e| T.pack $(mkTextLit text) |] mkName (TN name namespace) = [e| TN $(mkText name) $(mkNamespace namespace) |] mkNamespace ls = listE $ stringE . T.unpack <$> ls mkMaybeText (Just text) = [e| Just $(mkText text) |] mkMaybeText Nothing = [e| Nothing |] mkOrder (Just Ascending) = [e| Just Ascending |] mkOrder (Just Descending) = [e| Just Descending |] mkOrder (Just Ignore) = [e| Just Ignore |] mkOrder Nothing = [e| Nothing |] mkField Field {..} = [e| Field { fldName = $(mkText fldName) , fldAliases = $(ListE <$> mapM mkText fldAliases) , fldDoc = $(mkMaybeText fldDoc) , fldOrder = $(mkOrder fldOrder) , fldType = $(mkSchema fldType) , fldDefault = $(fromMaybe [e|Nothing|] $ mkJust . mkDefaultValue <$> fldDefault) } |] mkJust exp = [e|Just $(exp)|] mkDefaultValue = \case AT.Null -> [e| AT.Null |] AT.Boolean b -> [e| AT.Boolean $(if b then [e|True|] else [e|False|]) |] AT.Int n -> [e| AT.Int $(litE $ IntegerL $ fromIntegral n) |] AT.Long n -> [e| AT.Long $(litE $ IntegerL $ fromIntegral n) |] AT.Float f -> [e| AT.Long $(litE $ FloatPrimL $ realToFrac f) |] AT.Double f -> [e| AT.Long $(litE $ FloatPrimL $ realToFrac f) |] AT.Bytes bs -> [e| AT.Bytes $(mkByteString bs) |] AT.String s -> [e| AT.String $(mkText s) |] AT.Array vec -> [e| AT.Array $ V.fromList $(ListE <$> mapM mkDefaultValue (V.toList vec)) |] AT.Map m -> [e| AT.Map $ $(mkMap m) |] AT.Record s m -> [e| AT.Record $(mkSchema s) $(mkMap m) |] AT.Union ts t v -> [e| AT.Union $(mkNE ts) $(mkSchema t) $(mkDefaultValue v) |] AT.Fixed s bs -> [e| AT.Fixed $(mkSchema s) $(mkByteString bs) |] AT.Enum s n sym -> [e| AT.Enum $(mkSchema s) $(litE $ IntegerL $ fromIntegral n) $(mkText sym) |] mkByteString bs = [e| B.pack $(ListE <$> mapM numericLit (B.unpack bs)) |] where numericLit = litE . IntegerL . fromIntegral mkMap (HM.toList -> xs) = [e| HM.fromList $(ListE <$> mapM mkKVPair xs) |] mkKVPair (k, v) = [e| ($(mkText k), $(mkDefaultValue v)) |] mkNE (NE.toList -> xs) = [e| NE.fromList $(ListE <$> mapM mkSchema xs) |] -- | A hack around TemplateHaskell limitation: -- It is currently not possible to splice variable name in QQ. -- This function allows to replace hardcoded name into the specified one. setName :: Name -> Q [Dec] -> Q [Dec] setName = fmap . map . sn where sn n (SigD _ t) = SigD n t sn n (ValD (VarP _) x y) = ValD (VarP n) x y sn _ d = d genType :: DeriveOptions -> Schema -> Q [Dec] genType opts (S.Record n _ _ _ fs) = do flds <- traverse (mkField opts n) fs let dname = mkDataTypeName (namespaceBehavior opts) n sequenceA [genDataType dname flds] genType opts (S.Enum n _ _ vs _) = do let dname = mkDataTypeName (namespaceBehavior opts) n sequenceA [genEnum dname (mkAdtCtorName (namespaceBehavior opts) n <$> vs)] genType opts (S.Fixed n _ s) = do let dname = mkDataTypeName (namespaceBehavior opts) n sequenceA [genNewtype dname] genType _ _ = pure [] mkFieldTypeName :: NamespaceBehavior -> S.Type -> Q TH.Type mkFieldTypeName namespaceBehavior = \case S.Boolean -> [t| Bool |] S.Long -> [t| Int64 |] S.Int -> [t| Int32 |] S.Float -> [t| Float |] S.Double -> [t| Double |] S.Bytes -> [t| ByteString |] S.String -> [t| Text |] S.Union branches _ -> union branches S.Record n _ _ _ _ -> [t| $(conT $ mkDataTypeName namespaceBehavior n) |] S.Map x -> [t| Map Text $(go x) |] S.Array x -> [t| [$(go x)] |] S.NamedType n -> [t| $(conT $ mkDataTypeName namespaceBehavior n)|] S.Fixed n _ _ -> [t| $(conT $ mkDataTypeName namespaceBehavior n)|] S.Enum n _ _ _ _ -> [t| $(conT $ mkDataTypeName namespaceBehavior n)|] t -> error $ "Avro type is not supported: " <> show t where go = mkFieldTypeName namespaceBehavior union = \case Null :| [x] -> [t| Maybe $(go x) |] x :| [Null] -> [t| Maybe $(go x) |] x :| [y] -> [t| Either $(go x) $(go y) |] a :| [b, c] -> [t| Either3 $(go a) $(go b) $(go c) |] a :| [b, c, d] -> [t| Either4 $(go a) $(go b) $(go c) $(go d) |] a :| [b, c, d, e] -> [t| Either5 $(go a) $(go b) $(go c) $(go d) $(go e) |] _ -> error "Unions with more than 5 elements are not yet supported" updateFirst :: (Text -> Text) -> Text -> Text updateFirst f t = let (l, ls) = T.splitAt 1 t in f l <> ls decodeSchema :: FilePath -> IO (Either String Schema) decodeSchema p = eitherDecode <$> LBS.readFile p mkAdtCtorName :: NamespaceBehavior -> TypeName -> Text -> Name mkAdtCtorName namespaceBehavior prefix nm = concatNames (mkDataTypeName namespaceBehavior prefix) (mkDataTypeName' nm) concatNames :: Name -> Name -> Name concatNames a b = mkName $ nameBase a <> nameBase b sanitiseName :: Text -> Text sanitiseName = let valid c = isAlphaNum c || c == '\'' || c == '_' in T.concat . T.split (not . valid) -- | Renders a fully qualified Avro name to a valid Haskell -- identifier. This does not change capitalization—make sure to -- capitalize as needed depending on whether the name is a Haskell -- type, constructor, variable or field. -- -- With 'HandleNamespaces', namespace components (if any) are -- separated with @'@. The Avro name @"com.example.foo"@ would be -- rendered as @com'example'foo@. -- -- With 'IgnoreNamespaces', only the base name of the type is -- used. The Avro name @"com.example.foo"@ would be rendered as -- @"foo"@. renderName :: NamespaceBehavior -- ^ How to handle namespaces when generating the type -- name. -> TypeName -- ^ The name to transform into a valid Haskell -- identifier. -> Text renderName namespaceBehavior (TN name namespace) = case namespaceBehavior of HandleNamespaces -> Text.intercalate "'" $ namespace <> [name] IgnoreNamespaces -> name mkSchemaValueName :: NamespaceBehavior -> TypeName -> Name mkSchemaValueName namespaceBehavior typeName = mkTextName $ "schema'" <> renderName namespaceBehavior typeName mkDataTypeName :: NamespaceBehavior -> TypeName -> Name mkDataTypeName namespaceBehavior = mkDataTypeName' . renderName namespaceBehavior mkDataTypeName' :: Text -> Name mkDataTypeName' = mkTextName . sanitiseName . updateFirst T.toUpper . T.takeWhileEnd (/='.') mkField :: DeriveOptions -> TypeName -> Field -> Q VarStrictType mkField opts typeName field = do ftype <- mkFieldTypeName (namespaceBehavior opts) (fldType field) let prefix = renderName (namespaceBehavior opts) typeName fName = mkTextName $ (fieldNameBuilder opts) prefix field (fieldStrictness, fieldUnpackedness) = fieldRepresentation opts typeName field strictness = case fieldStrictness of StrictField -> strict fieldUnpackedness LazyField -> notStrict pure (fName, strictness, ftype) genNewtype :: Name -> Q Dec #if MIN_VERSION_template_haskell(2,12,0) genNewtype dn = do ders <- sequenceA [[t|Eq|], [t|Show|], [t|Generic|]] fldType <- [t|ByteString|] let ctor = RecC dn [(mkName ("un" ++ nameBase dn), notStrict, fldType)] pure $ NewtypeD [] dn [] Nothing ctor [DerivClause Nothing ders] #elif MIN_VERSION_template_haskell(2,11,0) genNewtype dn = do ders <- sequenceA [[t|Eq|], [t|Show|], [t|Generic|]] fldType <- [t|ByteString|] let ctor = RecC dn [(mkName ("un" ++ nameBase dn), notStrict, fldType)] pure $ NewtypeD [] dn [] Nothing ctor ders #else genNewtype dn = do [ConT eq, ConT sh] <- sequenceA [[t|Eq|], [t|Show|], [t|Generic|]] fldType <- [t|ByteString|] let ctor = RecC dn [(mkName ("un" ++ nameBase dn), notStrict, fldType)] pure $ NewtypeD [] dn [] ctor [eq, sh] #endif genEnum :: Name -> [Name] -> Q Dec #if MIN_VERSION_template_haskell(2,12,0) genEnum dn vs = do ders <- sequenceA [[t|Eq|], [t|Show|], [t|Ord|], [t|Enum|], [t|Generic|]] pure $ DataD [] dn [] Nothing ((\n -> NormalC n []) <$> vs) [DerivClause Nothing ders] #elif MIN_VERSION_template_haskell(2,11,0) genEnum dn vs = do ders <- sequenceA [[t|Eq|], [t|Show|], [t|Ord|], [t|Enum|], [t|Generic|]] pure $ DataD [] dn [] Nothing ((\n -> NormalC n []) <$> vs) ders #else genEnum dn vs = do [ConT eq, ConT sh, ConT or, ConT en] <- sequenceA [[t|Eq|], [t|Show|], [t|Ord|], [t|Enum|], [t|Generic|]] pure $ DataD [] dn [] ((\n -> NormalC n []) <$> vs) [eq, sh, or, en] #endif genDataType :: Name -> [VarStrictType] -> Q Dec #if MIN_VERSION_template_haskell(2,12,0) genDataType dn flds = do ders <- sequenceA [[t|Eq|], [t|Show|], [t|Generic|]] pure $ DataD [] dn [] Nothing [RecC dn flds] [DerivClause Nothing ders] #elif MIN_VERSION_template_haskell(2,11,0) genDataType dn flds = do ders <- sequenceA [[t|Eq|], [t|Show|], [t|Generic|]] pure $ DataD [] dn [] Nothing [RecC dn flds] ders #else genDataType dn flds = do [ConT eq, ConT sh] <- sequenceA [[t|Eq|], [t|Show|], [t|Generic|]] pure $ DataD [] dn [] [RecC dn flds] [eq, sh] #endif notStrict :: Strict #if MIN_VERSION_template_haskell(2,11,0) notStrict = Bang SourceNoUnpack NoSourceStrictness #else notStrict = NotStrict #endif strict :: FieldUnpackedness -> Strict #if MIN_VERSION_template_haskell(2,11,0) strict UnpackedField = Bang SourceUnpack SourceStrict strict NonUnpackedField = Bang SourceNoUnpack SourceStrict #else strict UnpackedField = Unpacked strict NonUnpackedField = IsStrict #endif mkTextName :: Text -> Name mkTextName = mkName . T.unpack mkLit :: String -> ExpQ mkLit = litE . StringL mkTextLit :: Text -> ExpQ mkTextLit = litE . StringL . T.unpack