{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE EmptyCase #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} -- | -- Module : Numeric.Backprop.Class -- Copyright : (c) Justin Le 2023 -- License : BSD3 -- -- Maintainer : justin@jle.im -- Stability : experimental -- Portability : non-portable -- -- Provides the 'Backprop' typeclass, a class for values that can be used -- for backpropagation. -- -- This class replaces the old (version 0.1) API relying on 'Num'. -- -- @since 0.2.0.0 module Numeric.Backprop.Class ( -- * Backpropagatable types Backprop(..) -- * Derived methods , zeroNum, addNum, oneNum , zeroVec, addVec, oneVec, zeroVecNum, oneVecNum , zeroFunctor, addIsList, addAsList, oneFunctor , genericZero, genericAdd, genericOne -- * Newtype , ABP(..), NumBP(..), NumVec(..) -- * Generics , GZero, GAdd, GOne ) where import Control.Applicative import Control.DeepSeq import Control.Monad import Data.Coerce import Data.Complex import Data.Data import Data.Foldable hiding (toList) import Data.Functor.Compose import Data.Functor.Identity import Data.List.NonEmpty (NonEmpty(..)) import Data.Monoid import Data.Ratio import Data.Vinyl import Data.Vinyl.ARec import Data.Vinyl.TypeLevel import Data.Void import Data.Word import GHC.Exts import GHC.Generics import Numeric.Natural import qualified Control.Arrow as Arr import qualified Data.Functor.Product as DFP import qualified Data.IntMap as IM import qualified Data.Map as M import qualified Data.Semigroup as SG import qualified Data.Sequence as Seq import qualified Data.Vector as V import qualified Data.Vector.Generic as VG import qualified Data.Vector.Primitive as VP import qualified Data.Vector.Storable as VS import qualified Data.Vector.Unboxed as VU import qualified Data.Vinyl.Functor as V import qualified Data.Vinyl.XRec as V -- | Class of values that can be backpropagated in general. -- -- For instances of 'Num', these methods can be given by 'zeroNum', -- 'addNum', and 'oneNum'. There are also generic options given in -- "Numeric.Backprop.Class" for functors, 'IsList' instances, and 'Generic' -- instances. -- -- @ -- instance 'Backprop' 'Double' where -- 'zero' = 'zeroNum' -- 'add' = 'addNum' -- 'one' = 'oneNum' -- @ -- -- If you leave the body of an instance declaration blank, GHC Generics -- will be used to derive instances if the type has a single constructor -- and each field is an instance of 'Backprop'. -- -- To ensure that backpropagation works in a sound way, should obey the -- laws: -- -- [/identity/] -- -- * @'add' x ('zero' y) = x@ -- -- * @'add' ('zero' x) y = y@ -- -- Also implies preservation of information, making @'zipWith' ('+')@ an -- illegal implementation for lists and vectors. -- -- This is only expected to be true up to potential "extra zeroes" in @x@ -- and @y@ in the result. -- -- [/commutativity/] -- -- * @'add' x y = 'add' y x@ -- -- [/associativity/] -- -- * @'add' x ('add' y z) = 'add' ('add' x y) z@ -- -- [/idempotence/] -- -- * @'zero' '.' 'zero' = 'zero'@ -- -- * @'one' '.' 'one' = 'one'@ -- -- [/unital/] -- -- * @'one' = 'gradBP' 'id'@ -- -- Note that not all values in the backpropagation process needs all of -- these methods: Only the "final result" needs 'one', for example. These -- are all grouped under one typeclass for convenience in defining -- instances, and also to talk about sensible laws. For fine-grained -- control, use the "explicit" versions of library functions (for example, -- in "Numeric.Backprop.Explicit") instead of 'Backprop' based ones. -- -- This typeclass replaces the reliance on 'Num' of the previous API -- (v0.1). 'Num' is strictly more powerful than 'Backprop', and is -- a stronger constraint on types than is necessary for proper -- backpropagating. In particular, 'fromInteger' is a problem for many -- types, preventing useful backpropagation for lists, variable-length -- vectors (like "Data.Vector") and variable-size matrices from linear -- algebra libraries like /hmatrix/ and /accelerate/. -- -- @since 0.2.0.0 class Backprop a where -- | "Zero out" all components of a value. For scalar values, this -- should just be @'const' 0@. For vectors and matrices, this should -- set all components to zero, the additive identity. -- -- Should be idempotent: -- -- * @'zero' '.' 'zero' = 'zero'@ -- -- Should be as /lazy/ as possible. This behavior is observed for -- all instances provided by this library. -- -- See 'zeroNum' for a pre-built definition for instances of 'Num' and -- 'zeroFunctor' for a definition for instances of 'Functor'. If left -- blank, will automatically be 'genericZero', a pre-built definition -- for instances of 'GHC.Generic' whose fields are all themselves -- instances of 'Backprop'. zero :: a -> a -- | Add together two values of a type. To combine contributions of -- gradients, so should be information-preserving: -- -- * @'add' x ('zero' y) = x@ -- -- * @'add' ('zero' x) y = y@ -- -- Should be as /strict/ as possible. This behavior is observed for -- all instances provided by this library. -- -- See 'addNum' for a pre-built definition for instances of 'Num' and -- 'addIsList' for a definition for instances of 'IsList'. If left -- blank, will automatically be 'genericAdd', a pre-built definition -- for instances of 'GHC.Generic' with one constructor whose fields are -- all themselves instances of 'Backprop'. add :: a -> a -> a -- | "One" all components of a value. For scalar values, this should -- just be @'const' 1@. For vectors and matrices, this should set all -- components to one, the multiplicative identity. -- -- As the library uses it, the most important law is: -- -- * @'one' = 'gradBP' 'id'@ -- -- That is, @'one' x@ is the gradient of the identity function with -- respect to its input. -- -- Ideally should be idempotent: -- -- * @'one' '.' 'one' = 'one'@ -- -- Should be as /lazy/ as possible. This behavior is observed for -- all instances provided by this library. -- -- See 'oneNum' for a pre-built definition for instances of 'Num' and -- 'oneFunctor' for a definition for instances of 'Functor'. If left -- blank, will automatically be 'genericOne', a pre-built definition -- for instances of 'GHC.Generic' whose fields are all themselves -- instances of 'Backprop'. one :: a -> a default zero :: (Generic a, GZero (Rep a)) => a -> a zero = genericZero {-# INLINE zero #-} default add :: (Generic a, GAdd (Rep a)) => a -> a -> a add = genericAdd {-# INLINE add #-} default one :: (Generic a, GOne (Rep a)) => a -> a one = genericOne {-# INLINE one #-} -- | 'zero' using GHC Generics; works if all fields are instances of -- 'Backprop'. genericZero :: (Generic a, GZero (Rep a)) => a -> a genericZero = to . gzero . from {-# INLINE genericZero #-} -- | 'add' using GHC Generics; works if all fields are instances of -- 'Backprop', but only for values with single constructors. genericAdd :: (Generic a, GAdd (Rep a)) => a -> a -> a genericAdd x y = to $ gadd (from x) (from y) {-# INLINE genericAdd #-} -- | 'one' using GHC Generics; works if all fields are instaces of -- 'Backprop'. genericOne :: (Generic a, GOne (Rep a)) => a -> a genericOne = to . gone . from {-# INLINE genericOne #-} -- | 'zero' for instances of 'Num'. -- -- Is lazy in its argument. zeroNum :: Num a => a -> a zeroNum _ = 0 {-# INLINE zeroNum #-} -- | 'add' for instances of 'Num'. addNum :: Num a => a -> a -> a addNum = (+) {-# INLINE addNum #-} -- | 'one' for instances of 'Num'. -- -- Is lazy in its argument. oneNum :: Num a => a -> a oneNum _ = 1 {-# INLINE oneNum #-} -- | 'zero' for instances of 'VG.Vector'. zeroVec :: (VG.Vector v a, Backprop a) => v a -> v a zeroVec = VG.map zero {-# INLINE zeroVec #-} -- | 'add' for instances of 'VG.Vector'. Automatically pads the end of the -- shorter vector with zeroes. addVec :: (VG.Vector v a, Backprop a) => v a -> v a -> v a addVec x y = case compare lX lY of LT -> let (y1,y2) = VG.splitAt (lY - lX) y in VG.zipWith add x y1 VG.++ y2 EQ -> VG.zipWith add x y GT -> let (x1,x2) = VG.splitAt (lX - lY) x in VG.zipWith add x1 y VG.++ x2 where lX = VG.length x lY = VG.length y -- | 'one' for instances of 'VG.Vector'. oneVec :: (VG.Vector v a, Backprop a) => v a -> v a oneVec = VG.map one {-# INLINE oneVec #-} -- | 'zero' for instances of 'VG.Vector' when the contained type is an -- instance of 'Num'. Is potentially more performant than 'zeroVec' when -- the vectors are larger. -- -- See 'NumVec' for a 'Backprop' instance for 'VG.Vector' instances that -- uses this for 'zero'. -- -- @since 0.2.4.0 zeroVecNum :: (VG.Vector v a, Num a) => v a -> v a zeroVecNum = flip VG.replicate 0 . VG.length {-# INLINE zeroVecNum #-} -- | 'one' for instances of 'VG.Vector' when the contained type is an -- instance of 'Num'. Is potentially more performant than 'oneVec' when -- the vectors are larger. -- -- See 'NumVec' for a 'Backprop' instance for 'VG.Vector' instances that -- uses this for 'one'. -- -- @since 0.2.4.0 oneVecNum :: (VG.Vector v a, Num a) => v a -> v a oneVecNum = flip VG.replicate 1 . VG.length {-# INLINE oneVecNum #-} -- | 'zero' for 'Functor' instances. zeroFunctor :: (Functor f, Backprop a) => f a -> f a zeroFunctor = fmap zero {-# INLINE zeroFunctor #-} -- | 'add' for instances of 'IsList'. Automatically pads the end of the -- "shorter" value with zeroes. addIsList :: (IsList a, Backprop (Item a)) => a -> a -> a addIsList = addAsList toList fromList {-# INLINE addIsList #-} -- | 'add' for types that are isomorphic to a list. -- Automatically pads the end of the "shorter" value with zeroes. addAsList :: Backprop b => (a -> [b]) -- ^ convert to list (should form isomorphism) -> ([b] -> a) -- ^ convert from list (should form isomorphism) -> a -> a -> a addAsList f g x y = g $ go (f x) (f y) where go = \case [] -> id o@(x':xs) -> \case [] -> o y':ys -> add x' y' : go xs ys -- | 'one' for instances of 'Functor'. oneFunctor :: (Functor f, Backprop a) => f a -> f a oneFunctor = fmap one {-# INLINE oneFunctor #-} -- | A newtype wrapper over an instance of 'Num' that gives a free -- 'Backprop' instance. -- -- Useful for things like /DerivingVia/, or for avoiding orphan instances. -- -- @since 0.2.1.0 newtype NumBP a = NumBP { runNumBP :: a } deriving (Show, Read, Eq, Ord, Typeable, Data, Generic, Functor, Foldable, Traversable, Num, Fractional, Floating) instance NFData a => NFData (NumBP a) instance Applicative NumBP where pure = NumBP {-# INLINE pure #-} f <*> x = NumBP $ (runNumBP f) (runNumBP x) {-# INLINE (<*>) #-} instance Monad NumBP where return = NumBP {-# INLINE return #-} x >>= f = f (runNumBP x) {-# INLINE (>>=) #-} instance Num a => Backprop (NumBP a) where zero = coerce (zeroNum :: a -> a) {-# INLINE zero #-} add = coerce (addNum :: a -> a -> a) {-# INLINE add #-} one = coerce (oneNum :: a -> a) {-# INLINE one #-} -- | Newtype wrapper around a @v a@ for @'VG.Vector' v a@, that gives -- a more efficient 'Backprop' instance for /long/ vectors when @a@ is an -- instance of 'Num'. The normal 'Backprop' instance for vectors will map -- 'zero' or 'one' over all items; this instance will completely ignore the -- contents of the original vector and instead produce a new vector of the -- same length, with all @0@ or @1@ using the 'Num' instance of @a@ -- (essentially using 'zeroVecNum' and 'oneVecNum' instead of 'zeroVec' and -- 'oneVec'). -- -- 'add' is essentially the same as normal, but using '+' instead of the -- type's 'add'. -- -- @since 0.2.4.0 newtype NumVec v a = NumVec { runNumVec :: v a } deriving (Show, Read, Eq, Ord, Typeable, Data, Generic, Functor, Applicative, Monad, Alternative, MonadPlus, Foldable, Traversable) instance NFData (v a) => NFData (NumVec v a) instance (VG.Vector v a, Num a) => Backprop (NumVec v a) where zero = coerce $ zeroVecNum @v @a add (NumVec x) (NumVec y) = NumVec $ case compare lX lY of LT -> let (y1,y2) = VG.splitAt (lY - lX) y in VG.zipWith (+) x y1 VG.++ y2 EQ -> VG.zipWith (+) x y GT -> let (x1,x2) = VG.splitAt (lX - lY) x in VG.zipWith (+) x1 y VG.++ x2 where lX = VG.length x lY = VG.length y one = coerce $ oneVecNum @v @a -- | A newtype wrapper over an @f a@ for @'Applicative' f@ that gives -- a free 'Backprop' instance (as well as 'Num' etc. instances). -- -- Useful for performing backpropagation over functions that require some -- monadic context (like 'IO') to perform. -- -- @since 0.2.1.0 newtype ABP f a = ABP { runABP :: f a } deriving (Show, Read, Eq, Ord, Typeable, Data, Generic, Functor, Applicative, Monad, Alternative, MonadPlus, Foldable, Traversable) instance NFData (f a) => NFData (ABP f a) instance (Applicative f, Backprop a) => Backprop (ABP f a) where zero = fmap zero {-# INLINE zero #-} add = liftA2 add {-# INLINE add #-} one = fmap one {-# INLINE one #-} instance (Applicative f, Num a) => Num (ABP f a) where (+) = liftA2 (+) {-# INLINE (+) #-} (-) = liftA2 (-) {-# INLINE (-) #-} (*) = liftA2 (*) {-# INLINE (*) #-} negate = fmap negate {-# INLINE negate #-} abs = fmap abs {-# INLINE abs #-} signum = fmap signum {-# INLINE signum #-} fromInteger = pure . fromInteger {-# INLINE fromInteger #-} instance (Applicative f, Fractional a) => Fractional (ABP f a) where (/) = liftA2 (/) {-# INLINE (/) #-} recip = fmap recip {-# INLINE recip #-} fromRational = pure . fromRational {-# INLINE fromRational #-} instance (Applicative f, Floating a) => Floating (ABP f a) where pi = pure pi {-# INLINE pi #-} exp = fmap exp {-# INLINE exp #-} log = fmap log {-# INLINE log #-} sqrt = fmap sqrt {-# INLINE sqrt #-} (**) = liftA2 (**) {-# INLINE (**) #-} logBase = liftA2 logBase {-# INLINE logBase #-} sin = fmap sin {-# INLINE sin #-} cos = fmap cos {-# INLINE cos #-} tan = fmap tan {-# INLINE tan #-} asin = fmap asin {-# INLINE asin #-} acos = fmap acos {-# INLINE acos #-} atan = fmap atan {-# INLINE atan #-} sinh = fmap sinh {-# INLINE sinh #-} cosh = fmap cosh {-# INLINE cosh #-} tanh = fmap tanh {-# INLINE tanh #-} asinh = fmap asinh {-# INLINE asinh #-} acosh = fmap acosh {-# INLINE acosh #-} atanh = fmap atanh {-# INLINE atanh #-} -- | Helper class for automatically deriving 'zero' using GHC Generics. class GZero f where gzero :: f t -> f t instance Backprop a => GZero (K1 i a) where gzero (K1 x) = K1 (zero x) {-# INLINE gzero #-} instance (GZero f, GZero g) => GZero (f :*: g) where gzero (x :*: y) = gzero x :*: gzero y {-# INLINE gzero #-} instance (GZero f, GZero g) => GZero (f :+: g) where gzero (L1 x) = L1 (gzero x) gzero (R1 x) = R1 (gzero x) {-# INLINE gzero #-} instance GZero V1 where gzero = \case {} {-# INLINE gzero #-} instance GZero U1 where gzero _ = U1 {-# INLINE gzero #-} instance GZero f => GZero (M1 i c f) where gzero (M1 x) = M1 (gzero x) {-# INLINE gzero #-} instance GZero f => GZero (f :.: g) where gzero (Comp1 x) = Comp1 (gzero x) {-# INLINE gzero #-} -- | Helper class for automatically deriving 'add' using GHC Generics. class GAdd f where gadd :: f t -> f t -> f t instance Backprop a => GAdd (K1 i a) where gadd (K1 x) (K1 y) = K1 (add x y) {-# INLINE gadd #-} instance (GAdd f, GAdd g) => GAdd (f :*: g) where gadd (x1 :*: y1) (x2 :*: y2) = x3 :*: y3 where !x3 = gadd x1 x2 !y3 = gadd y1 y2 {-# INLINE gadd #-} instance GAdd V1 where gadd = \case {} {-# INLINE gadd #-} instance GAdd U1 where gadd _ _ = U1 {-# INLINE gadd #-} instance GAdd f => GAdd (M1 i c f) where gadd (M1 x) (M1 y) = M1 (gadd x y) {-# INLINE gadd #-} instance GAdd f => GAdd (f :.: g) where gadd (Comp1 x) (Comp1 y) = Comp1 (gadd x y) {-# INLINE gadd #-} -- | Helper class for automatically deriving 'one' using GHC Generics. class GOne f where gone :: f t -> f t instance Backprop a => GOne (K1 i a) where gone (K1 x) = K1 (one x) {-# INLINE gone #-} instance (GOne f, GOne g) => GOne (f :*: g) where gone (x :*: y) = gone x :*: gone y {-# INLINE gone #-} instance (GOne f, GOne g) => GOne (f :+: g) where gone (L1 x) = L1 (gone x) gone (R1 x) = R1 (gone x) {-# INLINE gone #-} instance GOne V1 where gone = \case {} {-# INLINE gone #-} instance GOne U1 where gone _ = U1 {-# INLINE gone #-} instance GOne f => GOne (M1 i c f) where gone (M1 x) = M1 (gone x) {-# INLINE gone #-} instance GOne f => GOne (f :.: g) where gone (Comp1 x) = Comp1 (gone x) {-# INLINE gone #-} instance Backprop Int where zero = zeroNum {-# INLINE zero #-} add = addNum {-# INLINE add #-} one = oneNum {-# INLINE one #-} instance Backprop Integer where zero = zeroNum {-# INLINE zero #-} add = addNum {-# INLINE add #-} one = oneNum {-# INLINE one #-} -- | @since 0.2.1.0 instance Backprop Natural where zero = zeroNum {-# INLINE zero #-} add = addNum {-# INLINE add #-} one = oneNum {-# INLINE one #-} -- | @since 0.2.2.0 instance Backprop Word8 where zero = zeroNum {-# INLINE zero #-} add = addNum {-# INLINE add #-} one = oneNum {-# INLINE one #-} -- | @since 0.2.2.0 instance Backprop Word where zero = zeroNum {-# INLINE zero #-} add = addNum {-# INLINE add #-} one = oneNum {-# INLINE one #-} -- | @since 0.2.2.0 instance Backprop Word16 where zero = zeroNum {-# INLINE zero #-} add = addNum {-# INLINE add #-} one = oneNum {-# INLINE one #-} -- | @since 0.2.2.0 instance Backprop Word32 where zero = zeroNum {-# INLINE zero #-} add = addNum {-# INLINE add #-} one = oneNum {-# INLINE one #-} -- | @since 0.2.2.0 instance Backprop Word64 where zero = zeroNum {-# INLINE zero #-} add = addNum {-# INLINE add #-} one = oneNum {-# INLINE one #-} instance Integral a => Backprop (Ratio a) where zero = zeroNum {-# INLINE zero #-} add = addNum {-# INLINE add #-} one = oneNum {-# INLINE one #-} instance RealFloat a => Backprop (Complex a) where zero = zeroNum {-# INLINE zero #-} add = addNum {-# INLINE add #-} one = oneNum {-# INLINE one #-} instance Backprop Float where zero = zeroNum {-# INLINE zero #-} add = addNum {-# INLINE add #-} one = oneNum {-# INLINE one #-} instance Backprop Double where zero = zeroNum {-# INLINE zero #-} add = addNum {-# INLINE add #-} one = oneNum {-# INLINE one #-} instance Backprop a => Backprop (V.Vector a) where zero = zeroVec {-# INLINE zero #-} add = addVec {-# INLINE add #-} one = oneVec {-# INLINE one #-} instance (VU.Unbox a, Backprop a) => Backprop (VU.Vector a) where zero = zeroVec {-# INLINE zero #-} add = addVec {-# INLINE add #-} one = oneVec {-# INLINE one #-} instance (VS.Storable a, Backprop a) => Backprop (VS.Vector a) where zero = zeroVec {-# INLINE zero #-} add = addVec {-# INLINE add #-} one = oneVec {-# INLINE one #-} instance (VP.Prim a, Backprop a) => Backprop (VP.Vector a) where zero = zeroVec {-# INLINE zero #-} add = addVec {-# INLINE add #-} one = oneVec {-# INLINE one #-} -- | 'add' assumes the shorter list has trailing zeroes, and the result has -- the length of the longest input. instance Backprop a => Backprop [a] where zero = zeroFunctor {-# INLINE zero #-} add = addIsList {-# INLINE add #-} one = oneFunctor {-# INLINE one #-} -- | 'add' assumes the shorter list has trailing zeroes, and the result has -- the length of the longest input. instance Backprop a => Backprop (NonEmpty a) where zero = zeroFunctor {-# INLINE zero #-} add = addIsList {-# INLINE add #-} one = oneFunctor {-# INLINE one #-} -- | 'add' assumes the shorter sequence has trailing zeroes, and the result -- has the length of the longest input. instance Backprop a => Backprop (Seq.Seq a) where zero = zeroFunctor {-# INLINE zero #-} add = addIsList {-# INLINE add #-} one = oneFunctor {-# INLINE one #-} -- | 'Nothing' is treated the same as @'Just' 0@. However, 'zero', 'add', -- and 'one' preserve 'Nothing' if all inputs are also 'Nothing'. instance Backprop a => Backprop (Maybe a) where zero = zeroFunctor {-# INLINE zero #-} add x y = asum [ add <$> x <*> y , x , y ] {-# INLINE add #-} one = oneFunctor {-# INLINE one #-} -- | 'add' is strict, but 'zero' and 'one' are lazy in their arguments. instance Backprop () where zero _ = () add () () = () one _ = () -- | 'add' is strict instance (Backprop a, Backprop b) => Backprop (a, b) where zero (x, y) = (zero x, zero y) {-# INLINE zero #-} add (x1, y1) (x2, y2) = (x3, y3) where !x3 = add x1 x2 !y3 = add y1 y2 {-# INLINE add #-} one (x, y) = (one x, one y) {-# INLINE one #-} -- | 'add' is strict instance (Backprop a, Backprop b, Backprop c) => Backprop (a, b, c) where zero (x, y, z) = (zero x, zero y, zero z) {-# INLINE zero #-} add (x1, y1, z1) (x2, y2, z2) = (x3, y3, z3) where !x3 = add x1 x2 !y3 = add y1 y2 !z3 = add z1 z2 {-# INLINE add #-} one (x, y, z) = (one x, one y, one z) {-# INLINE one #-} -- | 'add' is strict instance (Backprop a, Backprop b, Backprop c, Backprop d) => Backprop (a, b, c, d) where zero (x, y, z, w) = (zero x, zero y, zero z, zero w) {-# INLINE zero #-} add (x1, y1, z1, w1) (x2, y2, z2, w2) = (x3, y3, z3, w3) where !x3 = add x1 x2 !y3 = add y1 y2 !z3 = add z1 z2 !w3 = add w1 w2 {-# INLINE add #-} one (x, y, z, w) = (one x, one y, one z, one w) {-# INLINE one #-} -- | 'add' is strict instance (Backprop a, Backprop b, Backprop c, Backprop d, Backprop e) => Backprop (a, b, c, d, e) where zero (x, y, z, w, v) = (zero x, zero y, zero z, zero w, zero v) {-# INLINE zero #-} add (x1, y1, z1, w1, v1) (x2, y2, z2, w2, v2) = (x3, y3, z3, w3, v3) where !x3 = add x1 x2 !y3 = add y1 y2 !z3 = add z1 z2 !w3 = add w1 w2 !v3 = add v1 v2 {-# INLINE add #-} one (x, y, z, w, v) = (one x, one y, one z, one w, one v) {-# INLINE one #-} instance Backprop a => Backprop (Identity a) where zero = coerce (zero @a) add = coerce (add @a) one = coerce (one @a) instance Backprop (Proxy a) where zero _ = Proxy {-# INLINE zero #-} add _ _ = Proxy {-# INLINE add #-} one _ = Proxy {-# INLINE one #-} -- | @since 0.2.2.0 instance Backprop w => Backprop (Const w a) where zero = coerce (zero @w) add = coerce (add @w) one = coerce (one @w) instance Backprop Void where zero = \case {} {-# INLINE zero #-} add = \case {} {-# INLINE add #-} one = \case {} {-# INLINE one #-} -- | 'zero' and 'one' replace all current values, and 'add' merges keys -- from both maps, adding in the case of double-occurrences. instance (Backprop a, Ord k) => Backprop (M.Map k a) where zero = zeroFunctor {-# INLINE zero #-} add = M.unionWith add {-# INLINE add #-} one = oneFunctor {-# INLINE one #-} -- | 'zero' and 'one' replace all current values, and 'add' merges keys -- from both maps, adding in the case of double-occurrences. instance (Backprop a) => Backprop (IM.IntMap a) where zero = zeroFunctor {-# INLINE zero #-} add = IM.unionWith add {-# INLINE add #-} one = oneFunctor {-# INLINE one #-} -- | @since 0.2.2.0 instance Backprop a => Backprop (K1 i a p) where zero = coerce (zero @a) add = coerce (add @a) one = coerce (one @a) -- | @since 0.2.2.0 instance Backprop (f p) => Backprop (M1 i c f p) where zero = coerce (zero @(f p)) add = coerce (add @(f p)) one = coerce (one @(f p)) -- | @since 0.2.2.0 instance (Backprop (f p), Backprop (g p)) => Backprop ((f :*: g) p) -- | @since 0.2.6.3 instance (Backprop (f (g a))) => Backprop ((f :.: g) a) where zero = coerce (zero @(f (g a))) add = coerce (add @(f (g a))) one = coerce (one @(f (g a))) -- | @since 0.2.2.0 instance Backprop (V1 p) -- | @since 0.2.2.0 instance Backprop (U1 p) -- | @since 0.2.2.0 instance Backprop a => Backprop (Sum a) where zero = coerce (zero @a) add = coerce (add @a) one = coerce (one @a) -- | @since 0.2.2.0 instance Backprop a => Backprop (Product a) where zero = coerce (zero @a) add = coerce (add @a) one = coerce (one @a) #if !MIN_VERSION_base(4,16,0) -- | @since 0.2.2.0 instance Backprop a => Backprop (SG.Option a) where zero = coerce (zero @(Maybe a)) add = coerce (add @(Maybe a)) one = coerce (one @(Maybe a)) #endif -- | @since 0.2.2.0 instance Backprop a => Backprop (SG.First a) where zero = coerce (zero @a) add = coerce (add @a) one = coerce (one @a) -- | @since 0.2.2.0 instance Backprop a => Backprop (SG.Last a) where zero = coerce (zero @a) add = coerce (add @a) one = coerce (one @a) -- | @since 0.2.2.0 instance Backprop a => Backprop (First a) where zero = coerce (zero @(Maybe a)) add = coerce (add @(Maybe a)) one = coerce (one @(Maybe a)) -- | @since 0.2.2.0 instance Backprop a => Backprop (Data.Monoid.Last a) where zero = coerce (zero @(Maybe a)) add = coerce (add @(Maybe a)) one = coerce (one @(Maybe a)) -- | @since 0.2.2.0 instance Backprop a => Backprop (Dual a) where zero = coerce (zero @a) add = coerce (add @a) one = coerce (one @a) -- | @since 0.2.2.0 instance (Backprop a, Backprop b) => Backprop (SG.Arg a b) -- | @since 0.2.2.0 instance (Backprop (f a), Backprop (g a)) => Backprop (DFP.Product f g a) -- | @since 0.2.2.0 instance Backprop (f (g a)) => Backprop (Compose f g a) where zero = coerce (zero @(f (g a))) add = coerce (add @(f (g a))) one = coerce (one @(f (g a))) -- | 'add' adds together results; 'zero' and 'one' act on results. -- -- @since 0.2.2.0 instance Backprop a => Backprop (r -> a) where zero = zeroFunctor {-# INLINE zero #-} add = liftA2 add {-# INLINE add #-} one = oneFunctor {-# INLINE one #-} -- | @since 0.2.2.0 instance (Backprop a, Applicative m) => Backprop (Arr.Kleisli m r a) where zero (Arr.Kleisli f) = Arr.Kleisli ((fmap . fmap) zero f) {-# INLINE zero #-} add (Arr.Kleisli f) (Arr.Kleisli g) = Arr.Kleisli $ \x -> add <$> f x <*> g x {-# INLINE add #-} one (Arr.Kleisli f) = Arr.Kleisli ((fmap . fmap) one f) {-# INLINE one #-} -- | @since 0.2.6.3 instance (ReifyConstraint Backprop f rs, RMap rs, RApply rs) => Backprop (Rec f rs) where zero = rmap (\case V.Compose (Dict x) -> zero x) . reifyConstraint @Backprop {-# INLINE zero #-} add xs = rzipWith (\x -> \case V.Compose (Dict y) -> add x y) xs . reifyConstraint @Backprop {-# INLINE add #-} one = rmap (\case V.Compose (Dict x) -> one x) . reifyConstraint @Backprop {-# INLINE one #-} -- | @since 0.2.6.3 #if MIN_VERSION_vinyl(0,14,2) instance (ReifyConstraint Backprop f rs, RMap rs, RApply rs, RecApplicative rs, NatToInt (RLength rs), RPureConstrained (IndexableField rs) rs, ToARec rs) #else instance (ReifyConstraint Backprop f rs, RMap rs, RApply rs, RecApplicative rs, NatToInt (RLength rs), RPureConstrained (IndexableField rs) rs) #endif => Backprop (ARec f rs) where zero = toARec . zero . fromARec {-# INLINE zero #-} add xs ys = toARec $ add (fromARec xs) (fromARec ys) {-# INLINE add #-} one = toARec . zero . fromARec {-# INLINE one #-} -- | @since 0.2.6.3 instance (ReifyConstraint Backprop f rs, RMap rs, RApply rs, VS.Storable (Rec f rs)) => Backprop (SRec f rs) where zero = toSRec . zero . fromSRec {-# INLINE zero #-} add xs ys = toSRec $ add (fromSRec xs) (fromSRec ys) {-# INLINE add #-} one = toSRec . zero . fromSRec {-# INLINE one #-} -- | @since 0.2.6.3 instance (ReifyConstraint Backprop f rs, RMap rs, RApply rs, IsoXRec f rs) => Backprop (XRec f rs) where zero = toXRec . zero . fromXRec {-# INLINE zero #-} add xs ys = toXRec $ add (fromXRec xs) (fromXRec ys) {-# INLINE add #-} one = toXRec . zero . fromXRec {-# INLINE one #-} -- | @since 0.2.6.3 instance Backprop a => Backprop (V.Identity a) where zero = coerce (zero @a) add = coerce (add @a) one = coerce (one @a) -- | @since 0.2.6.3 instance Backprop a => Backprop (V.Thunk a) where zero (V.Thunk x) = V.Thunk (zero x) add (V.Thunk x) (V.Thunk y) = V.Thunk (add x y) one (V.Thunk x) = V.Thunk (one x) -- | @since 0.2.6.3 instance Backprop (op (f a) (g a)) => Backprop (V.Lift op f g a) where zero = coerce (zero @(op (f a) (g a))) add = coerce (add @(op (f a) (g a))) one = coerce (one @(op (f a) (g a))) -- | @since 0.2.6.3 instance Backprop t => Backprop (V.ElField '(s, t)) where zero (V.Field x) = V.Field (zero x) add (V.Field x) (V.Field y) = V.Field (add x y) one (V.Field x) = V.Field (one x) -- | @since 0.2.6.3 instance Backprop (f (g a)) => Backprop (V.Compose f g a) where zero = coerce (zero @(f (g a))) add = coerce (add @(f (g a))) one = coerce (one @(f (g a))) -- | @since 0.2.6.3 instance Backprop w => Backprop (V.Const w a) where zero = coerce (zero @w) add = coerce (add @w) one = coerce (one @w) -- | @since 0.2.6.3 instance Backprop (V.HKD t a) => Backprop (V.XData t a) where zero = coerce (zero @(V.HKD t a)) add = coerce (add @(V.HKD t a)) one = coerce (one @(V.HKD t a)) -- | @since 0.2.6.3 instance Backprop (SField field) where zero _ = SField add _ _ = SField one _ = SField -- | @since 0.2.6.3 instance Backprop (Label field) where zero _ = Label add _ _ = Label one _ = Label