-- | Implementation of paragraph layout, decoupled from external interfaces. module Data.Text.ParagraphLayout.Internal.Layout ( FragmentWithSpan , layoutAndAlignLines ) where import Data.Foldable (toList) import Data.Int (Int32) import Data.List (mapAccumL) import Data.List.NonEmpty (NonEmpty ((:|)), nonEmpty, (<|)) import qualified Data.List.NonEmpty as NonEmpty import Data.Maybe (fromMaybe) import Data.Semigroup (sconcat) import Data.Text.Foreign (lengthWord8) import Data.Text.Glyphize ( Buffer (..) , ContentType (ContentTypeUnicode) , Direction (DirLTR, DirRTL, DirTTB, DirBTT) , GlyphInfo , GlyphPos , defaultBuffer , shape ) import qualified Data.Text.ICU as BreakStatus (Line (Hard)) import qualified Data.Text.Lazy as Lazy import Data.Text.ParagraphLayout.Internal.AncestorBox import Data.Text.ParagraphLayout.Internal.ApplyBoxes import Data.Text.ParagraphLayout.Internal.BiDiReorder import Data.Text.ParagraphLayout.Internal.BoxOptions import Data.Text.ParagraphLayout.Internal.Break import Data.Text.ParagraphLayout.Internal.Fragment import Data.Text.ParagraphLayout.Internal.Line import Data.Text.ParagraphLayout.Internal.ParagraphAlignment import Data.Text.ParagraphLayout.Internal.ParagraphExtents import qualified Data.Text.ParagraphLayout.Internal.ProtoFragment as PF import qualified Data.Text.ParagraphLayout.Internal.ProtoLine as PL import Data.Text.ParagraphLayout.Internal.Rect import qualified Data.Text.ParagraphLayout.Internal.ResolvedBox as RB import qualified Data.Text.ParagraphLayout.Internal.ResolvedSpan as RS import Data.Text.ParagraphLayout.Internal.Run import Data.Text.ParagraphLayout.Internal.SplitList import Data.Text.ParagraphLayout.Internal.TextContainer import Data.Text.ParagraphLayout.Internal.TextOptions import qualified Data.Text.ParagraphLayout.Internal.VerticalOffsets as VO import Data.Text.ParagraphLayout.Internal.WithSpan -- This is redundant. -- TODO: Consider using `ResolvedSpan` as `fragmentUserData`, then swapping it -- for the actual `spanUserData` before returning it to the user. type ProtoFragmentWithSpan d = WithSpan d PF.ProtoFragment type FragmentWithSpan d = WithSpan d (Fragment d) type ProtoFragmentWithBoxes d = WithBoxes d (ProtoFragmentWithSpan d) -- | Create a multi-line layout from the given runs, splitting them as -- necessary to fit within the requested line width. -- -- The first output component is a flat list of fragments positioned -- in both dimensions. -- -- The second output component is a list of lines containing the -- positioned content. layoutAndAlignLines :: Direction -> ParagraphAlignment -> Int32 -> NonEmpty (WithSpan d Run) -> ([FragmentWithSpan d], [Line]) layoutAndAlignLines dir align maxWidth runs = (frags, ls) where frags = concatMap toList fragsInLines (fragsInLines, ls) = unzip fragsAndLines (_, fragsAndLines) = mapAccumL positionLine originY numberedLines positionLine = positionLineH dir align maxWidth numberedLines = zip [1 ..] canonicalLines canonicalLines = fmap reorderProtoFragments visibleLines visibleLines = filter PL.visible logicalLines logicalLines = toList $ layoutLines maxWidth [] runs originY = paragraphOriginY reorderProtoFragments :: PL.ProtoLine NonEmpty d -> PL.ProtoLine NonEmpty d reorderProtoFragments pl@(PL.ProtoLine { PL.protoFragments = pfs }) = pl { PL.protoFragments = reorder pfs } -- | Create a multi-line layout from the given runs, splitting them as -- necessary to fit within the requested line width. -- -- The output is a two-dimensional list of fragments positioned along the -- horizontal axis. layoutLines :: Int32 -> [RB.ResolvedBox d] -> NonEmpty (WithSpan d Run) -> NonEmpty (PL.ProtoLine NonEmpty d) layoutLines maxWidth openBoxes runs = case nonEmpty rest of -- Everything fits. We are done. Nothing -> fitting :| [] -- Something fits, the rest goes on the next line. Just runs' -> fitting <| layoutLines maxWidth openBoxes' runs' where (fitting, rest) = layoutAndWrapRunsH maxWidth openBoxes runs -- Update the list of open boxes using the logically last run -- on this line. openBoxes' = lastSpanBoxes $ PL.protoFragments fitting -- | Position all the given horizontal fragments on the same line, -- using @originY@ as its top edge, and return the bottom edge for continuation. -- -- Also return a `Line` structure with a defined vertical dimensions -- but undefined horizontal dimensions. positionLineH :: Direction -> ParagraphAlignment -> Int32 -> Int32 -> (Int, PL.ProtoLine NonEmpty d) -> (Int32, (NonEmpty (FragmentWithSpan d), Line)) positionLineH dir align maxWidth originY (num, pl) = (nextY, (frags, line)) where line = Line { lineNumber = num, lineRect = Rect 0 originY 0 sizeY } sizeY = nextY - originY (_, frags) = mapAccumL (positionFragmentH num) originX wpfs wpfs = PL.applyBoxes alignedLine (nextY, alignedLine) = verticalAlignment originY pl originX = paragraphOriginX + if lineWidth > maxWidth then overflowingLineOffset dir (lineWidth - maxWidth) else fittingLineOffset align dir (maxWidth - lineWidth) lineWidth = PL.width pl -- | Update vertical positions of all fragments on the line so that they -- respect vertical alignment settings and fit on a line whose top coordinate -- is @originY@. Also returns the bottom coordinate of the line. verticalAlignment :: Int32 -> PL.ProtoLine NonEmpty d -> (Int32, PL.ProtoLine NonEmpty d) verticalAlignment originY pl = (bottomY, PL.mapFragments setOrigin pl) where setOrigin rs pf = PF.mapVerticalOffsets (VO.alignBaseline (fragOffset rs)) pf fragOffset rs = case spanVO rs of (Nothing, vo) -> rootOffset + VO.baseline vo (Just b, vo) -> case boxVerticalAlignment $ RB.boxOptions b of AlignLineTop -> boxTopOffset b + VO.baseline vo AlignLineBottom -> boxBottomOffset b + VO.baseline vo _ -> error "verticalAlignment: wrong box used as anchor" bottomY = originY - finalLineHeight finalLineHeight = fittingTop - fittingBottom -- Firefox-like behaviour: -- First extend the line upwards to fit bottom-aligned boxes, -- then extend the line downwards to fit top-aligned boxes. fittingTop = maximum $ (:) rootTop $ map ((rootBottom +) . boxHeight) bottomAlignedBoxes fittingBottom = minimum $ (:) rootBottom $ map ((fittingTop -) . boxHeight) topAlignedBoxes rootTop = maximum $ fmap (VO.layoutTop . snd) rootVOs rootBottom = minimum $ fmap (VO.layoutBottom . snd) rootVOs rootVOs = filter VO.underRoot $ toList allVOs rootOffset = originY - fittingTop boxHeight b = boxTop b - boxBottom b boxTop b = maximum $ map (VO.layoutTop . snd) $ boxVOs b boxBottom b = minimum $ map (VO.layoutBottom . snd) $ boxVOs b boxVOs b = filter (VO.underBox b) $ toList allVOs -- How much to shift from baseline 0 so that layoutTop = originY? boxTopOffset b = originY - boxTop b -- How much to shift from baseline 0 so that layoutBottom = bottomY? boxBottomOffset b = bottomY - boxBottom b boxesOnLine = foldr RB.union [] $ fmap fragBoxes $ PL.protoFragments pl topAlignedBoxes = filter topAligned boxesOnLine bottomAlignedBoxes = filter bottomAligned boxesOnLine topAligned rb = boxVerticalAlignment (RB.boxOptions rb) == AlignLineTop bottomAligned rb = boxVerticalAlignment (RB.boxOptions rb) == AlignLineBottom fragBoxes (WithSpan rs _) = RS.spanBoxes rs -- Struts may get duplicated in `allVOs`. -- This should not be a problem since we are using idempotent functions. allVOs = sconcat $ fmap fragStruttedVOs $ PL.protoFragments pl fragStruttedVOs (WithSpan rs _) = spanStruttedVOs rs spanVO rs = NonEmpty.head $ spanStruttedVOs rs spanStruttedVOs rs = VO.strutted (RS.spanTextOptions rs) (RS.spanBoxes rs) -- | Inline offset of the first fragment on a line that overflows. overflowingLineOffset :: Direction -> Int32 -> Int32 overflowingLineOffset DirLTR _ = 0 overflowingLineOffset DirTTB _ = 0 overflowingLineOffset DirRTL excess = -excess -- TODO: Check if the sign needs to be flipped for vertical text. overflowingLineOffset DirBTT excess = -excess -- | Inline offset of the first fragment on a line with extra blank space. fittingLineOffset :: ParagraphAlignment -> Direction -> Int32 -> Int32 fittingLineOffset AlignLeft _ = leftAlignOffset fittingLineOffset AlignRight _ = rightAlignOffset fittingLineOffset AlignCentreH _ = centreAlignOffset fittingLineOffset AlignStart DirLTR = leftAlignOffset fittingLineOffset AlignEnd DirLTR = rightAlignOffset fittingLineOffset AlignStart DirRTL = rightAlignOffset fittingLineOffset AlignEnd DirRTL = leftAlignOffset -- For completeness, treat vertical directions as horizontal directions -- rotated 90° clockwise, thus left becomes top and right becomes bottom. -- TODO: Verify this when vertical text is implemented. fittingLineOffset AlignStart DirTTB = leftAlignOffset fittingLineOffset AlignEnd DirTTB = rightAlignOffset fittingLineOffset AlignStart DirBTT = rightAlignOffset fittingLineOffset AlignEnd DirBTT = leftAlignOffset leftAlignOffset :: Int32 -> Int32 leftAlignOffset _ = 0 rightAlignOffset :: Int32 -> Int32 rightAlignOffset slack = slack centreAlignOffset :: Int32 -> Int32 centreAlignOffset slack = slack `div` 2 -- | Position the given horizontal fragment on a line, using @originX@ as its -- left edge, returning the X coordinate of its right edge for continuation. positionFragmentH :: Int -> Int32 -> ProtoFragmentWithBoxes d -> (Int32, FragmentWithSpan d) positionFragmentH line originX (WithBoxes lbs (WithSpan rs pf) rbs) = (nextX, WithSpan rs frag) where nextX = contentX + contentWidth + rightSpacing contentX = originX + leftSpacing contentWidth = PF.advance pf leftSpacing = totalLeftSpacing bs rightSpacing = totalRightSpacing bs frag = Fragment { fragmentUserData = userData , fragmentLine = line , fragmentAncestorBoxes = bs , fragmentContentRect = contentRect , fragmentRect = rect , fragmentPen = (penX, penY) , fragmentGlyphs = (PF.glyphs pf) } userData = RS.spanUserData rs bs = ancestorBoxes lbs rbs rs contentRect = Rect contentX fontTop contentWidth (fontBottom - fontTop) rect = Rect contentX layoutTop contentWidth (layoutBottom - layoutTop) penX = 0 penY = baseline - layoutTop VO.VerticalOffsets { VO.layoutTop = layoutTop , VO.fontTop = fontTop , VO.baseline = baseline , VO.fontBottom = fontBottom , VO.layoutBottom = layoutBottom } = PF.verticalOffsets pf ancestorBoxes :: [RB.ResolvedBox d] -> [RB.ResolvedBox d] -> RS.ResolvedSpan d -> [AncestorBox d] ancestorBoxes leftBoxes rightBoxes rs = map ancestorBox $ RS.spanBoxes rs where ancestorBox b = case RB.boxDirection b of DirLTR -> AncestorBox { boxUserData = RB.boxUserData b , boxLeftEdge = leftEdge b , boxRightEdge = rightEdge b , boxStartEdge = leftEdge b , boxEndEdge = rightEdge b } DirRTL -> AncestorBox { boxUserData = RB.boxUserData b , boxLeftEdge = leftEdge b , boxRightEdge = rightEdge b , boxStartEdge = rightEdge b , boxEndEdge = leftEdge b } _ -> AncestorBox { boxUserData = RB.boxUserData b , boxLeftEdge = NoEdge , boxRightEdge = NoEdge , boxStartEdge = NoEdge , boxEndEdge = NoEdge } leftEdge b = if b `elem` leftBoxes then SpacedEdge $ RB.boxLeftSpacing b else NoEdge rightEdge b = if b `elem` rightBoxes then SpacedEdge $ RB.boxRightSpacing b else NoEdge -- | Calculate layout for multiple horizontal runs, breaking them as necessary -- to fit as much content as possible without exceeding the maximum line width, -- and return the remaining runs to be placed on other lines. layoutAndWrapRunsH :: Int32 -> [RB.ResolvedBox d] -> NonEmpty (WithSpan d Run) -> (PL.ProtoLine NonEmpty d, [WithSpan d Run]) layoutAndWrapRunsH maxWidth prevOpenBoxes runs = NonEmpty.head $ validProtoLines where validProtoLines = dropWhile1 tooLong layouts tooLong (pl, _) = PL.width pl > maxWidth layouts = fmap fstToProtoLine splits fstToProtoLine (runs1, runs2) = (protoLine prevOpenBoxes (layoutRunsH runs1) runs2, runs2) -- TODO: Consider optimising. -- We do not need to look for soft breaks further than the -- shortest hard break. -- TODO: Untrimmed whitespace should be reset to paragraph BiDi level -- per rule L1. splits = hardSplit runs :| softSplits runs -- | Construct a `PL.ProtoLine`, peeking at the text run on the following line -- to determine `PL.nextOpenBoxes`. protoLine :: [RB.ResolvedBox d] -> NonEmpty (ProtoFragmentWithSpan d) -> [WithSpan d Run] -> PL.ProtoLine NonEmpty d protoLine prev pfs rest = PL.ProtoLine pfs prev next where next = [] `fromMaybe` firstSpanBoxes rest firstSpanBoxes :: [WithSpan d a] -> Maybe [RB.ResolvedBox d] firstSpanBoxes xs = case xs of [] -> Nothing (WithSpan rs _) : _ -> Just $ RS.spanBoxes rs lastSpanBoxes :: NonEmpty (WithSpan d a) -> [RB.ResolvedBox d] lastSpanBoxes xs = case NonEmpty.last xs of WithSpan rs _ -> RS.spanBoxes rs -- | Treat a list of runs as a contiguous sequence, and split them into two -- lists so that the first list contains as many non-whitespace characters as -- possible without crossing a hard line break (typically after a newline -- character). -- -- If the input is non-empty and starts with a hard line break, then the first -- output list will contain a run of zero characters. This can be used to -- correctly size an empty line. -- -- If there is a hard line break in the input, the run containing it will have -- its `runHardBreak` set to `True`. -- -- If there is no hard line break in the input, the first output list will -- contain the whole input, and the second output list will be empty. hardSplit :: NonEmpty (WithSpan d Run) -> (NonEmpty (WithSpan d Run), [WithSpan d Run]) hardSplit runs = case reverse hSplits of [] -> noSplit (splitRuns : _) -> forcedSplit splitRuns where noSplit = (trim runs, []) forcedSplit (runs1, runs2) = (markHard $ trim runs1, runs2) markHard = mapLast markHard' markHard' (WithSpan rs x) = WithSpan rs x { runHardBreak = True } trim = dropWhileStartCascade isStartSpace . dropWhileEndCascade isEndSpace . dropWhileEndCascade isNewline -- TODO: Consider optimising. -- We do not need to look for any line breaks further than the -- shortest hard break. hSplits = nonEmptyFsts $ -- from longest to shortest splitTextsBy (map fst . filter isHard . runLineBreaks) runs isHard (_, status) = status == BreakStatus.Hard -- | Apply a function to the last element of the non-empty list. mapLast :: (a -> a) -> NonEmpty a -> NonEmpty a mapLast f xs = case NonEmpty.uncons xs of (x, Nothing) -> f x :| [] (x, Just rest) -> NonEmpty.cons x $ mapLast f rest -- | Treat a list of runs as a contiguous sequence, -- and find all possible ways to split them into two non-empty lists, -- using soft line break opportunities (typically after words) and then -- using character boundaries. -- -- Runs of zero characters will not be created. If line breaking would result -- in a line that consists entirely of whitespace, this whitespace will be -- skipped, so an empty line is not created. -- -- The results in the form (prefix, suffix) will be ordered so that items -- closer to the start of the list are preferred for line breaking, but without -- considering overflows. softSplits :: NonEmpty (WithSpan d Run) -> [(NonEmpty (WithSpan d Run), [WithSpan d Run])] softSplits runs = map (allowSndEmpty . trimFst) splits where trimFst (runs1, runs2) = (trim runs1, runs2) trim = dropWhileStartCascade isStartSpace . dropWhileEndCascade isEndSpace splits = lSplits ++ cSplits lSplits = nonEmptyPairs $ splitTextsBy (map fst . runLineBreaks) runs -- TODO: Consider optimising. -- We do not need to look for character breaks further than the -- shortest line break. cSplits = nonEmptyPairs $ splitTextsBy (map fst . runCharacterBreaks) runs -- | The suffix remaining after removing the longest prefix of the list for -- which the predicate holds, except always including at least the last element -- of the original list. dropWhile1 :: (a -> Bool) -> NonEmpty a -> NonEmpty a dropWhile1 p list = case NonEmpty.uncons list of (_, Nothing) -> list (x, Just xs) -> if p x then dropWhile1 p xs else list -- | Calculate layout for multiple horizontal runs on the same line, without -- any breaking. layoutRunsH :: Functor f => f (WithSpan d Run) -> f (ProtoFragmentWithSpan d) layoutRunsH runs = fmap layoutRunH runs -- | Calculate layout for the given horizontal run and attach extra information. layoutRunH :: WithSpan d Run -> ProtoFragmentWithSpan d layoutRunH (WithSpan rs run) = WithSpan rs pf where pf = PF.protoFragmentH dir lvl vo glyphs hard glyphs = shapeRun (WithSpan rs run) dir = runDirection run lvl = runLevel run vo = VO.fromText (RS.spanTextOptions rs) hard = runHardBreak run -- | Calculate layout for the given run independently of its position. shapeRun :: WithSpan d Run -> [(GlyphInfo, GlyphPos)] shapeRun (WithSpan rs run) = shape font buffer features where font = textFont opts buffer = defaultBuffer { text = Lazy.fromStrict $ runText run , contentType = Just ContentTypeUnicode , direction = Just $ runDirection run , script = runScript run , language = Just $ textLanguage opts -- Perhaps counter-intuitively, the `beginsText` and `endsText` -- flags refer to everything that "Data.Text.Glyphize" can see, -- not just the current run. -- -- Since all runs are cut from a single continuous `Text` that -- represents the entire paragraph, and "Data.Text.Glyphize" peeks -- at the whole underlying byte array, HarfBuzz will be able to see -- both the beginning and the end of the paragraph at all times, -- so these flags can always be set. , beginsText = True , endsText = True } features = [] opts = RS.spanTextOptions rs runLineBreaks :: WithSpan d Run -> [(Int, BreakStatus.Line)] runLineBreaks (WithSpan rs run) = runBreaksFromSpan run $ RS.spanLineBreaks rs runCharacterBreaks :: WithSpan d Run -> [(Int, ())] runCharacterBreaks (WithSpan rs run) = runBreaksFromSpan run $ RS.spanCharacterBreaks rs -- | Constrain span breaks to a selected run and adjust offsets. runBreaksFromSpan :: Run -> [(Int, a)] -> [(Int, a)] runBreaksFromSpan run spanBreaks = dropWhile (not . valid) $ subOffsetsDesc (runOffsetInSpan run) spanBreaks where valid (off, _) = off <= runLength runLength = lengthWord8 $ getText run -- | Predicate for characters that can be potentially removed from the -- beginning of a line according to the CSS Text Module. isStartSpace :: Char -> Bool isStartSpace c = c `elem` [' ', '\t'] -- | Predicate for characters that can be potentially removed from the end of -- a line according to the CSS Text Module. isEndSpace :: Char -> Bool isEndSpace c = c `elem` [' ', '\t', '\x1680'] -- | Predicate for characters that should be removed from the end of a line in -- the case of a hard line break. isNewline :: Char -> Bool isNewline c = c == '\n'