{-# LANGUAGE PolyKinds #-} {-# LANGUAGE TypeFamilies #-} {-# OPTIONS_GHC -Wno-orphans #-} module Barbies.Internal.TraversableB ( TraversableB(..) , btraverse_ , bsequence , bsequence' , bfoldMap , CanDeriveTraversableB , gbtraverseDefault ) where import Barbies.Generics.Traversable(GTraversable(..)) import Barbies.Internal.FunctorB(FunctorB (..)) import Barbies.Internal.Writer(execWr, tell) import Data.Functor (void) import Data.Functor.Compose (Compose (..)) import Data.Functor.Const (Const (..)) import Data.Functor.Constant (Constant (..)) import Data.Functor.Identity (Identity (..)) import Data.Functor.Product (Product (..)) import Data.Functor.Sum (Sum (..)) import Data.Kind (Type) import Data.Generics.GenericN import Data.Proxy (Proxy (..)) -- | Barbie-types that can be traversed from left to right. Instances should -- satisfy the following laws: -- -- @ -- t . 'btraverse' f = 'btraverse' (t . f) -- naturality -- 'btraverse' 'Data.Functor.Identity' = 'Data.Functor.Identity' -- identity -- 'btraverse' ('Compose' . 'fmap' g . f) = 'Compose' . 'fmap' ('btraverse' g) . 'btraverse' f -- composition -- @ -- -- There is a default 'btraverse' implementation for 'Generic' types, so -- instances can derived automatically. class FunctorB b => TraversableB (b :: (k -> Type) -> Type) where btraverse :: Applicative e => (forall a . f a -> e (g a)) -> b f -> e (b g) default btraverse :: ( Applicative e, CanDeriveTraversableB b f g) => (forall a . f a -> e (g a)) -> b f -> e (b g) btraverse = gbtraverseDefault -- | Map each element to an action, evaluate these actions from left to right, -- and ignore the results. btraverse_ :: (TraversableB b, Applicative e) => (forall a. f a -> e c) -> b f -> e () btraverse_ f = void . btraverse (fmap (const $ Const ()) . f) -- | Evaluate each action in the structure from left to right, -- and collect the results. bsequence :: (Applicative e, TraversableB b) => b (Compose e f) -> e (b f) bsequence = btraverse getCompose -- | A version of 'bsequence' with @f@ specialized to 'Identity'. bsequence' :: (Applicative e, TraversableB b) => b e -> e (b Identity) bsequence' = btraverse (fmap Identity) -- | Map each element to a monoid, and combine the results. bfoldMap :: (TraversableB b, Monoid m) => (forall a. f a -> m) -> b f -> m bfoldMap f = execWr . btraverse_ (tell . f) -- | @'CanDeriveTraversableB' B f g@ is in practice a predicate about @B@ only. -- It is analogous to 'Barbies.Internal.FunctorB.CanDeriveFunctorB', so it -- essentially requires the following to hold, for any arbitrary @f@: -- -- * There is an instance of @'Generic' (B f)@. -- -- * @B f@ can contain fields of type @b f@ as long as there exists a -- @'TraversableB' b@ instance. In particular, recursive usages of @B f@ -- are allowed. -- -- * @B f@ can also contain usages of @b f@ under a @'Traversable' h@. -- For example, one could use @'Maybe' (B f)@ when defining @B f@. type CanDeriveTraversableB b f g = ( GenericP 0 (b f) , GenericP 0 (b g) , GTraversable 0 f g (RepP 0 (b f)) (RepP 0 (b g)) ) -- | Default implementation of 'btraverse' based on 'Generic'. gbtraverseDefault :: forall b f g e . (Applicative e, CanDeriveTraversableB b f g) => (forall a . f a -> e (g a)) -> b f -> e (b g) gbtraverseDefault h = fmap (toP (Proxy @0)) . gtraverse (Proxy @0) h . fromP (Proxy @0) {-# INLINE gbtraverseDefault #-} -- ------------------------------------------------------------ -- Generic derivation: Special cases for TraversableB -- ----------------------------------------------------------- type P = Param instance ( TraversableB b ) => GTraversable 0 f g (Rec (b (P 0 f)) (b f)) (Rec (b (P 0 g)) (b g)) where gtraverse _ h = fmap (Rec . K1) . btraverse h . unK1 . unRec {-# INLINE gtraverse #-} instance ( Traversable h , TraversableB b ) => GTraversable 0 f g (Rec (h (b (P 0 f))) (h (b f))) (Rec (h (b (P 0 g))) (h (b g))) where gtraverse _ h = fmap (Rec . K1) . traverse (btraverse h) . unK1 . unRec {-# INLINE gtraverse #-} -- This instance is the same as the previous instance but for nested -- Traversables. instance ( Traversable h , Traversable m , TraversableB b ) => GTraversable 0 f g (Rec (m (h (b (P 0 f)))) (m (h (b f)))) (Rec (m (h (b (P 0 g)))) (m (h (b g)))) where gtraverse _ h = fmap (Rec . K1) . traverse (traverse (btraverse h)) . unK1 . unRec {-# INLINE gtraverse #-} -- ----------------------------------------------------------- -- Instances for base types -- ----------------------------------------------------------- instance TraversableB Proxy where btraverse _ _ = pure Proxy {-# INLINE btraverse #-} instance (TraversableB a, TraversableB b) => TraversableB (Product a b) where btraverse f (Pair x y) = Pair <$> btraverse f x <*> btraverse f y {-# INLINE btraverse #-} instance (TraversableB a, TraversableB b) => TraversableB (Sum a b) where btraverse f (InL x) = InL <$> btraverse f x btraverse f (InR x) = InR <$> btraverse f x {-# INLINE btraverse #-} instance TraversableB (Const a) where btraverse _ (Const x) = pure (Const x) {-# INLINE btraverse #-} instance (Traversable f, TraversableB b) => TraversableB (f `Compose` b) where btraverse h (Compose x) = Compose <$> traverse (btraverse h) x {-# INLINE btraverse #-} -- ----------------------------------------------------------- -- Instances for transformer types -- ----------------------------------------------------------- instance TraversableB (Constant a) where btraverse _ (Constant x) = pure (Constant x) {-# INLINE btraverse #-}