{-# OPTIONS_GHC -XNoImplicitPrelude #-} ----------------------------------------------------------------------------- -- | -- Module : Control.Exception -- Copyright : (c) The University of Glasgow 2001 -- License : BSD-style (see the file libraries/base/LICENSE) -- -- Maintainer : libraries@haskell.org -- Stability : experimental -- Portability : non-portable (extended exceptions) -- -- This module provides support for raising and catching both built-in -- and user-defined exceptions. -- -- In addition to exceptions thrown by 'IO' operations, exceptions may -- be thrown by pure code (imprecise exceptions) or by external events -- (asynchronous exceptions), but may only be caught in the 'IO' monad. -- For more details, see: -- -- * /A semantics for imprecise exceptions/, by Simon Peyton Jones, -- Alastair Reid, Tony Hoare, Simon Marlow, Fergus Henderson, -- in /PLDI'99/. -- -- * /Asynchronous exceptions in Haskell/, by Simon Marlow, Simon Peyton -- Jones, Andy Moran and John Reppy, in /PLDI'01/. -- ----------------------------------------------------------------------------- module Control.Exception ( -- * The Exception type #ifdef __HUGS__ SomeException, #else SomeException(..), #endif Exception(..), -- class IOException, -- instance Eq, Ord, Show, Typeable, Exception ArithException(..), -- instance Eq, Ord, Show, Typeable, Exception ArrayException(..), -- instance Eq, Ord, Show, Typeable, Exception AssertionFailed(..), AsyncException(..), -- instance Eq, Ord, Show, Typeable, Exception #if __GLASGOW_HASKELL__ || __HUGS__ NonTermination(..), NestedAtomically(..), #endif #ifdef __NHC__ System.ExitCode(), -- instance Exception #endif BlockedOnDeadMVar(..), BlockedIndefinitely(..), Deadlock(..), NoMethodError(..), PatternMatchFail(..), RecConError(..), RecSelError(..), RecUpdError(..), ErrorCall(..), -- * Throwing exceptions throwIO, -- :: Exception -> IO a throw, -- :: Exception -> a ioError, -- :: IOError -> IO a #ifdef __GLASGOW_HASKELL__ throwTo, -- :: ThreadId -> Exception -> a #endif -- * Catching Exceptions -- |There are several functions for catching and examining -- exceptions; all of them may only be used from within the -- 'IO' monad. -- ** The @catch@ functions catch, -- :: IO a -> (Exception -> IO a) -> IO a catches, Handler(..), catchJust, -- :: (Exception -> Maybe b) -> IO a -> (b -> IO a) -> IO a -- ** The @handle@ functions handle, -- :: (Exception -> IO a) -> IO a -> IO a handleJust,-- :: (Exception -> Maybe b) -> (b -> IO a) -> IO a -> IO a -- ** The @try@ functions try, -- :: IO a -> IO (Either Exception a) tryJust, -- :: (Exception -> Maybe b) -> a -> IO (Either b a) onException, -- ** The @evaluate@ function evaluate, -- :: a -> IO a -- ** The @mapException@ function mapException, -- :: (Exception -> Exception) -> a -> a -- * Asynchronous Exceptions -- $async -- ** Asynchronous exception control -- |The following two functions allow a thread to control delivery of -- asynchronous exceptions during a critical region. block, -- :: IO a -> IO a unblock, -- :: IO a -> IO a blocked, -- :: IO Bool -- *** Applying @block@ to an exception handler -- $block_handler -- *** Interruptible operations -- $interruptible -- * Assertions assert, -- :: Bool -> a -> a -- * Utilities bracket, -- :: IO a -> (a -> IO b) -> (a -> IO c) -> IO () bracket_, -- :: IO a -> IO b -> IO c -> IO () bracketOnError, finally, -- :: IO a -> IO b -> IO a ) where import Control.Exception.Base #ifdef __GLASGOW_HASKELL__ import GHC.Base import GHC.IOBase import Data.Maybe #else import Prelude hiding (catch) #endif #ifdef __NHC__ import System (ExitCode()) #endif data Handler a = forall e . Exception e => Handler (e -> IO a) catches :: IO a -> [Handler a] -> IO a catches io handlers = io `catch` catchesHandler handlers catchesHandler :: [Handler a] -> SomeException -> IO a catchesHandler handlers e = foldr tryHandler (throw e) handlers where tryHandler (Handler handler) res = case fromException e of Just e' -> handler e' Nothing -> res -- ----------------------------------------------------------------------------- -- Asynchronous exceptions {- $async #AsynchronousExceptions# Asynchronous exceptions are so-called because they arise due to external influences, and can be raised at any point during execution. 'StackOverflow' and 'HeapOverflow' are two examples of system-generated asynchronous exceptions. The primary source of asynchronous exceptions, however, is 'throwTo': > throwTo :: ThreadId -> Exception -> IO () 'throwTo' (also 'throwDynTo' and 'Control.Concurrent.killThread') allows one running thread to raise an arbitrary exception in another thread. The exception is therefore asynchronous with respect to the target thread, which could be doing anything at the time it receives the exception. Great care should be taken with asynchronous exceptions; it is all too easy to introduce race conditions by the over zealous use of 'throwTo'. -} {- $block_handler There\'s an implied 'block' around every exception handler in a call to one of the 'catch' family of functions. This is because that is what you want most of the time - it eliminates a common race condition in starting an exception handler, because there may be no exception handler on the stack to handle another exception if one arrives immediately. If asynchronous exceptions are blocked on entering the handler, though, we have time to install a new exception handler before being interrupted. If this weren\'t the default, one would have to write something like > block ( > catch (unblock (...)) > (\e -> handler) > ) If you need to unblock asynchronous exceptions again in the exception handler, just use 'unblock' as normal. Note that 'try' and friends /do not/ have a similar default, because there is no exception handler in this case. If you want to use 'try' in an asynchronous-exception-safe way, you will need to use 'block'. -} {- $interruptible Some operations are /interruptible/, which means that they can receive asynchronous exceptions even in the scope of a 'block'. Any function which may itself block is defined as interruptible; this includes 'Control.Concurrent.MVar.takeMVar' (but not 'Control.Concurrent.MVar.tryTakeMVar'), and most operations which perform some I\/O with the outside world. The reason for having interruptible operations is so that we can write things like > block ( > a <- takeMVar m > catch (unblock (...)) > (\e -> ...) > ) if the 'Control.Concurrent.MVar.takeMVar' was not interruptible, then this particular combination could lead to deadlock, because the thread itself would be blocked in a state where it can\'t receive any asynchronous exceptions. With 'Control.Concurrent.MVar.takeMVar' interruptible, however, we can be safe in the knowledge that the thread can receive exceptions right up until the point when the 'Control.Concurrent.MVar.takeMVar' succeeds. Similar arguments apply for other interruptible operations like 'System.IO.openFile'. -}