\begin{code} {-# OPTIONS_GHC -XNoImplicitPrelude #-} {-# OPTIONS_GHC -fno-warn-orphans #-} {-# OPTIONS_HADDOCK hide #-} ----------------------------------------------------------------------------- -- | -- Module : GHC.Float -- Copyright : (c) The University of Glasgow 1994-2002 -- License : see libraries/base/LICENSE -- -- Maintainer : cvs-ghc@haskell.org -- Stability : internal -- Portability : non-portable (GHC Extensions) -- -- The types 'Float' and 'Double', and the classes 'Floating' and 'RealFloat'. -- ----------------------------------------------------------------------------- #include "ieee-flpt.h" -- #hide module GHC.Float( module GHC.Float, Float(..), Double(..), Float#, Double# ) where import Data.Maybe import GHC.Base import GHC.List import GHC.Enum import GHC.Show import GHC.Num import GHC.Real import GHC.Arr infixr 8 ** \end{code} %********************************************************* %* * \subsection{Standard numeric classes} %* * %********************************************************* \begin{code} -- | Trigonometric and hyperbolic functions and related functions. -- -- Minimal complete definition: -- 'pi', 'exp', 'log', 'sin', 'cos', 'sinh', 'cosh', -- 'asin', 'acos', 'atan', 'asinh', 'acosh' and 'atanh' class (Fractional a) => Floating a where pi :: a exp, log, sqrt :: a -> a (**), logBase :: a -> a -> a sin, cos, tan :: a -> a asin, acos, atan :: a -> a sinh, cosh, tanh :: a -> a asinh, acosh, atanh :: a -> a x ** y = exp (log x * y) logBase x y = log y / log x sqrt x = x ** 0.5 tan x = sin x / cos x tanh x = sinh x / cosh x -- | Efficient, machine-independent access to the components of a -- floating-point number. -- -- Minimal complete definition: -- all except 'exponent', 'significand', 'scaleFloat' and 'atan2' class (RealFrac a, Floating a) => RealFloat a where -- | a constant function, returning the radix of the representation -- (often @2@) floatRadix :: a -> Integer -- | a constant function, returning the number of digits of -- 'floatRadix' in the significand floatDigits :: a -> Int -- | a constant function, returning the lowest and highest values -- the exponent may assume floatRange :: a -> (Int,Int) -- | The function 'decodeFloat' applied to a real floating-point -- number returns the significand expressed as an 'Integer' and an -- appropriately scaled exponent (an 'Int'). If @'decodeFloat' x@ -- yields @(m,n)@, then @x@ is equal in value to @m*b^^n@, where @b@ -- is the floating-point radix, and furthermore, either @m@ and @n@ -- are both zero or else @b^(d-1) <= m < b^d@, where @d@ is the value -- of @'floatDigits' x@. In particular, @'decodeFloat' 0 = (0,0)@. decodeFloat :: a -> (Integer,Int) -- | 'encodeFloat' performs the inverse of 'decodeFloat' encodeFloat :: Integer -> Int -> a -- | the second component of 'decodeFloat'. exponent :: a -> Int -- | the first component of 'decodeFloat', scaled to lie in the open -- interval (@-1@,@1@) significand :: a -> a -- | multiplies a floating-point number by an integer power of the radix scaleFloat :: Int -> a -> a -- | 'True' if the argument is an IEEE \"not-a-number\" (NaN) value isNaN :: a -> Bool -- | 'True' if the argument is an IEEE infinity or negative infinity isInfinite :: a -> Bool -- | 'True' if the argument is too small to be represented in -- normalized format isDenormalized :: a -> Bool -- | 'True' if the argument is an IEEE negative zero isNegativeZero :: a -> Bool -- | 'True' if the argument is an IEEE floating point number isIEEE :: a -> Bool -- | a version of arctangent taking two real floating-point arguments. -- For real floating @x@ and @y@, @'atan2' y x@ computes the angle -- (from the positive x-axis) of the vector from the origin to the -- point @(x,y)@. @'atan2' y x@ returns a value in the range [@-pi@, -- @pi@]. It follows the Common Lisp semantics for the origin when -- signed zeroes are supported. @'atan2' y 1@, with @y@ in a type -- that is 'RealFloat', should return the same value as @'atan' y@. -- A default definition of 'atan2' is provided, but implementors -- can provide a more accurate implementation. atan2 :: a -> a -> a exponent x = if m == 0 then 0 else n + floatDigits x where (m,n) = decodeFloat x significand x = encodeFloat m (negate (floatDigits x)) where (m,_) = decodeFloat x scaleFloat k x = encodeFloat m (n+k) where (m,n) = decodeFloat x atan2 y x | x > 0 = atan (y/x) | x == 0 && y > 0 = pi/2 | x < 0 && y > 0 = pi + atan (y/x) |(x <= 0 && y < 0) || (x < 0 && isNegativeZero y) || (isNegativeZero x && isNegativeZero y) = -atan2 (-y) x | y == 0 && (x < 0 || isNegativeZero x) = pi -- must be after the previous test on zero y | x==0 && y==0 = y -- must be after the other double zero tests | otherwise = x + y -- x or y is a NaN, return a NaN (via +) \end{code} %********************************************************* %* * \subsection{Type @Float@} %* * %********************************************************* \begin{code} instance Eq Float where (F# x) == (F# y) = x `eqFloat#` y instance Ord Float where (F# x) `compare` (F# y) | x `ltFloat#` y = LT | x `eqFloat#` y = EQ | otherwise = GT (F# x) < (F# y) = x `ltFloat#` y (F# x) <= (F# y) = x `leFloat#` y (F# x) >= (F# y) = x `geFloat#` y (F# x) > (F# y) = x `gtFloat#` y instance Num Float where (+) x y = plusFloat x y (-) x y = minusFloat x y negate x = negateFloat x (*) x y = timesFloat x y abs x | x >= 0.0 = x | otherwise = negateFloat x signum x | x == 0.0 = 0 | x > 0.0 = 1 | otherwise = negate 1 {-# INLINE fromInteger #-} fromInteger i = F# (floatFromInteger i) instance Real Float where toRational x = (m%1)*(b%1)^^n where (m,n) = decodeFloat x b = floatRadix x instance Fractional Float where (/) x y = divideFloat x y fromRational x = fromRat x recip x = 1.0 / x {-# RULES "truncate/Float->Int" truncate = float2Int #-} instance RealFrac Float where {-# SPECIALIZE properFraction :: Float -> (Int, Float) #-} {-# SPECIALIZE round :: Float -> Int #-} {-# SPECIALIZE properFraction :: Float -> (Integer, Float) #-} {-# SPECIALIZE round :: Float -> Integer #-} -- ceiling, floor, and truncate are all small {-# INLINE ceiling #-} {-# INLINE floor #-} {-# INLINE truncate #-} properFraction x = case (decodeFloat x) of { (m,n) -> let b = floatRadix x in if n >= 0 then (fromInteger m * fromInteger b ^ n, 0.0) else case (quotRem m (b^(negate n))) of { (w,r) -> (fromInteger w, encodeFloat r n) } } truncate x = case properFraction x of (n,_) -> n round x = case properFraction x of (n,r) -> let m = if r < 0.0 then n - 1 else n + 1 half_down = abs r - 0.5 in case (compare half_down 0.0) of LT -> n EQ -> if even n then n else m GT -> m ceiling x = case properFraction x of (n,r) -> if r > 0.0 then n + 1 else n floor x = case properFraction x of (n,r) -> if r < 0.0 then n - 1 else n instance Floating Float where pi = 3.141592653589793238 exp x = expFloat x log x = logFloat x sqrt x = sqrtFloat x sin x = sinFloat x cos x = cosFloat x tan x = tanFloat x asin x = asinFloat x acos x = acosFloat x atan x = atanFloat x sinh x = sinhFloat x cosh x = coshFloat x tanh x = tanhFloat x (**) x y = powerFloat x y logBase x y = log y / log x asinh x = log (x + sqrt (1.0+x*x)) acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0))) atanh x = log ((x+1.0) / sqrt (1.0-x*x)) instance RealFloat Float where floatRadix _ = FLT_RADIX -- from float.h floatDigits _ = FLT_MANT_DIG -- ditto floatRange _ = (FLT_MIN_EXP, FLT_MAX_EXP) -- ditto decodeFloat (F# f#) = case decodeFloatInteger f# of (# i, e #) -> (i, I# e) encodeFloat i (I# e) = F# (encodeFloatInteger i e) exponent x = case decodeFloat x of (m,n) -> if m == 0 then 0 else n + floatDigits x significand x = case decodeFloat x of (m,_) -> encodeFloat m (negate (floatDigits x)) scaleFloat k x = case decodeFloat x of (m,n) -> encodeFloat m (n+k) isNaN x = 0 /= isFloatNaN x isInfinite x = 0 /= isFloatInfinite x isDenormalized x = 0 /= isFloatDenormalized x isNegativeZero x = 0 /= isFloatNegativeZero x isIEEE _ = True instance Show Float where showsPrec x = showSignedFloat showFloat x showList = showList__ (showsPrec 0) \end{code} %********************************************************* %* * \subsection{Type @Double@} %* * %********************************************************* \begin{code} instance Eq Double where (D# x) == (D# y) = x ==## y instance Ord Double where (D# x) `compare` (D# y) | x <## y = LT | x ==## y = EQ | otherwise = GT (D# x) < (D# y) = x <## y (D# x) <= (D# y) = x <=## y (D# x) >= (D# y) = x >=## y (D# x) > (D# y) = x >## y instance Num Double where (+) x y = plusDouble x y (-) x y = minusDouble x y negate x = negateDouble x (*) x y = timesDouble x y abs x | x >= 0.0 = x | otherwise = negateDouble x signum x | x == 0.0 = 0 | x > 0.0 = 1 | otherwise = negate 1 {-# INLINE fromInteger #-} fromInteger i = D# (doubleFromInteger i) instance Real Double where toRational x = (m%1)*(b%1)^^n where (m,n) = decodeFloat x b = floatRadix x instance Fractional Double where (/) x y = divideDouble x y fromRational x = fromRat x recip x = 1.0 / x instance Floating Double where pi = 3.141592653589793238 exp x = expDouble x log x = logDouble x sqrt x = sqrtDouble x sin x = sinDouble x cos x = cosDouble x tan x = tanDouble x asin x = asinDouble x acos x = acosDouble x atan x = atanDouble x sinh x = sinhDouble x cosh x = coshDouble x tanh x = tanhDouble x (**) x y = powerDouble x y logBase x y = log y / log x asinh x = log (x + sqrt (1.0+x*x)) acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0))) atanh x = log ((x+1.0) / sqrt (1.0-x*x)) {-# RULES "truncate/Double->Int" truncate = double2Int #-} instance RealFrac Double where {-# SPECIALIZE properFraction :: Double -> (Int, Double) #-} {-# SPECIALIZE round :: Double -> Int #-} {-# SPECIALIZE properFraction :: Double -> (Integer, Double) #-} {-# SPECIALIZE round :: Double -> Integer #-} -- ceiling, floor, and truncate are all small {-# INLINE ceiling #-} {-# INLINE floor #-} {-# INLINE truncate #-} properFraction x = case (decodeFloat x) of { (m,n) -> let b = floatRadix x in if n >= 0 then (fromInteger m * fromInteger b ^ n, 0.0) else case (quotRem m (b^(negate n))) of { (w,r) -> (fromInteger w, encodeFloat r n) } } truncate x = case properFraction x of (n,_) -> n round x = case properFraction x of (n,r) -> let m = if r < 0.0 then n - 1 else n + 1 half_down = abs r - 0.5 in case (compare half_down 0.0) of LT -> n EQ -> if even n then n else m GT -> m ceiling x = case properFraction x of (n,r) -> if r > 0.0 then n + 1 else n floor x = case properFraction x of (n,r) -> if r < 0.0 then n - 1 else n instance RealFloat Double where floatRadix _ = FLT_RADIX -- from float.h floatDigits _ = DBL_MANT_DIG -- ditto floatRange _ = (DBL_MIN_EXP, DBL_MAX_EXP) -- ditto decodeFloat (D# x#) = case decodeDoubleInteger x# of (# i, j #) -> (i, I# j) encodeFloat i (I# j) = D# (encodeDoubleInteger i j) exponent x = case decodeFloat x of (m,n) -> if m == 0 then 0 else n + floatDigits x significand x = case decodeFloat x of (m,_) -> encodeFloat m (negate (floatDigits x)) scaleFloat k x = case decodeFloat x of (m,n) -> encodeFloat m (n+k) isNaN x = 0 /= isDoubleNaN x isInfinite x = 0 /= isDoubleInfinite x isDenormalized x = 0 /= isDoubleDenormalized x isNegativeZero x = 0 /= isDoubleNegativeZero x isIEEE _ = True instance Show Double where showsPrec x = showSignedFloat showFloat x showList = showList__ (showsPrec 0) \end{code} %********************************************************* %* * \subsection{@Enum@ instances} %* * %********************************************************* The @Enum@ instances for Floats and Doubles are slightly unusual. The @toEnum@ function truncates numbers to Int. The definitions of @enumFrom@ and @enumFromThen@ allow floats to be used in arithmetic series: [0,0.1 .. 1.0]. However, roundoff errors make these somewhat dubious. This example may have either 10 or 11 elements, depending on how 0.1 is represented. NOTE: The instances for Float and Double do not make use of the default methods for @enumFromTo@ and @enumFromThenTo@, as these rely on there being a `non-lossy' conversion to and from Ints. Instead we make use of the 1.2 default methods (back in the days when Enum had Ord as a superclass) for these (@numericEnumFromTo@ and @numericEnumFromThenTo@ below.) \begin{code} instance Enum Float where succ x = x + 1 pred x = x - 1 toEnum = int2Float fromEnum = fromInteger . truncate -- may overflow enumFrom = numericEnumFrom enumFromTo = numericEnumFromTo enumFromThen = numericEnumFromThen enumFromThenTo = numericEnumFromThenTo instance Enum Double where succ x = x + 1 pred x = x - 1 toEnum = int2Double fromEnum = fromInteger . truncate -- may overflow enumFrom = numericEnumFrom enumFromTo = numericEnumFromTo enumFromThen = numericEnumFromThen enumFromThenTo = numericEnumFromThenTo \end{code} %********************************************************* %* * \subsection{Printing floating point} %* * %********************************************************* \begin{code} -- | Show a signed 'RealFloat' value to full precision -- using standard decimal notation for arguments whose absolute value lies -- between @0.1@ and @9,999,999@, and scientific notation otherwise. showFloat :: (RealFloat a) => a -> ShowS showFloat x = showString (formatRealFloat FFGeneric Nothing x) -- These are the format types. This type is not exported. data FFFormat = FFExponent | FFFixed | FFGeneric formatRealFloat :: (RealFloat a) => FFFormat -> Maybe Int -> a -> String formatRealFloat fmt decs x | isNaN x = "NaN" | isInfinite x = if x < 0 then "-Infinity" else "Infinity" | x < 0 || isNegativeZero x = '-':doFmt fmt (floatToDigits (toInteger base) (-x)) | otherwise = doFmt fmt (floatToDigits (toInteger base) x) where base = 10 doFmt format (is, e) = let ds = map intToDigit is in case format of FFGeneric -> doFmt (if e < 0 || e > 7 then FFExponent else FFFixed) (is,e) FFExponent -> case decs of Nothing -> let show_e' = show (e-1) in case ds of "0" -> "0.0e0" [d] -> d : ".0e" ++ show_e' (d:ds') -> d : '.' : ds' ++ "e" ++ show_e' [] -> error "formatRealFloat/doFmt/FFExponent: []" Just dec -> let dec' = max dec 1 in case is of [0] -> '0' :'.' : take dec' (repeat '0') ++ "e0" _ -> let (ei,is') = roundTo base (dec'+1) is (d:ds') = map intToDigit (if ei > 0 then init is' else is') in d:'.':ds' ++ 'e':show (e-1+ei) FFFixed -> let mk0 ls = case ls of { "" -> "0" ; _ -> ls} in case decs of Nothing | e <= 0 -> "0." ++ replicate (-e) '0' ++ ds | otherwise -> let f 0 s rs = mk0 (reverse s) ++ '.':mk0 rs f n s "" = f (n-1) ('0':s) "" f n s (r:rs) = f (n-1) (r:s) rs in f e "" ds Just dec -> let dec' = max dec 0 in if e >= 0 then let (ei,is') = roundTo base (dec' + e) is (ls,rs) = splitAt (e+ei) (map intToDigit is') in mk0 ls ++ (if null rs then "" else '.':rs) else let (ei,is') = roundTo base dec' (replicate (-e) 0 ++ is) d:ds' = map intToDigit (if ei > 0 then is' else 0:is') in d : (if null ds' then "" else '.':ds') roundTo :: Int -> Int -> [Int] -> (Int,[Int]) roundTo base d is = case f d is of x@(0,_) -> x (1,xs) -> (1, 1:xs) _ -> error "roundTo: bad Value" where b2 = base `div` 2 f n [] = (0, replicate n 0) f 0 (x:_) = (if x >= b2 then 1 else 0, []) f n (i:xs) | i' == base = (1,0:ds) | otherwise = (0,i':ds) where (c,ds) = f (n-1) xs i' = c + i -- Based on "Printing Floating-Point Numbers Quickly and Accurately" -- by R.G. Burger and R.K. Dybvig in PLDI 96. -- This version uses a much slower logarithm estimator. It should be improved. -- | 'floatToDigits' takes a base and a non-negative 'RealFloat' number, -- and returns a list of digits and an exponent. -- In particular, if @x>=0@, and -- -- > floatToDigits base x = ([d1,d2,...,dn], e) -- -- then -- -- (1) @n >= 1@ -- -- (2) @x = 0.d1d2...dn * (base**e)@ -- -- (3) @0 <= di <= base-1@ floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int) floatToDigits _ 0 = ([0], 0) floatToDigits base x = let (f0, e0) = decodeFloat x (minExp0, _) = floatRange x p = floatDigits x b = floatRadix x minExp = minExp0 - p -- the real minimum exponent -- Haskell requires that f be adjusted so denormalized numbers -- will have an impossibly low exponent. Adjust for this. (f, e) = let n = minExp - e0 in if n > 0 then (f0 `div` (b^n), e0+n) else (f0, e0) (r, s, mUp, mDn) = if e >= 0 then let be = b^ e in if f == b^(p-1) then (f*be*b*2, 2*b, be*b, b) else (f*be*2, 2, be, be) else if e > minExp && f == b^(p-1) then (f*b*2, b^(-e+1)*2, b, 1) else (f*2, b^(-e)*2, 1, 1) k :: Int k = let k0 :: Int k0 = if b == 2 && base == 10 then -- logBase 10 2 is slightly bigger than 3/10 so -- the following will err on the low side. Ignoring -- the fraction will make it err even more. -- Haskell promises that p-1 <= logBase b f < p. (p - 1 + e0) * 3 `div` 10 else ceiling ((log (fromInteger (f+1)) + fromIntegral e * log (fromInteger b)) / log (fromInteger base)) --WAS: fromInt e * log (fromInteger b)) fixup n = if n >= 0 then if r + mUp <= expt base n * s then n else fixup (n+1) else if expt base (-n) * (r + mUp) <= s then n else fixup (n+1) in fixup k0 gen ds rn sN mUpN mDnN = let (dn, rn') = (rn * base) `divMod` sN mUpN' = mUpN * base mDnN' = mDnN * base in case (rn' < mDnN', rn' + mUpN' > sN) of (True, False) -> dn : ds (False, True) -> dn+1 : ds (True, True) -> if rn' * 2 < sN then dn : ds else dn+1 : ds (False, False) -> gen (dn:ds) rn' sN mUpN' mDnN' rds = if k >= 0 then gen [] r (s * expt base k) mUp mDn else let bk = expt base (-k) in gen [] (r * bk) s (mUp * bk) (mDn * bk) in (map fromIntegral (reverse rds), k) \end{code} %********************************************************* %* * \subsection{Converting from a Rational to a RealFloat %* * %********************************************************* [In response to a request for documentation of how fromRational works, Joe Fasel writes:] A quite reasonable request! This code was added to the Prelude just before the 1.2 release, when Lennart, working with an early version of hbi, noticed that (read . show) was not the identity for floating-point numbers. (There was a one-bit error about half the time.) The original version of the conversion function was in fact simply a floating-point divide, as you suggest above. The new version is, I grant you, somewhat denser. Unfortunately, Joe's code doesn't work! Here's an example: main = putStr (shows (1.82173691287639817263897126389712638972163e-300::Double) "\n") This program prints 0.0000000000000000 instead of 1.8217369128763981e-300 Here's Joe's code: \begin{pseudocode} fromRat :: (RealFloat a) => Rational -> a fromRat x = x' where x' = f e -- If the exponent of the nearest floating-point number to x -- is e, then the significand is the integer nearest xb^(-e), -- where b is the floating-point radix. We start with a good -- guess for e, and if it is correct, the exponent of the -- floating-point number we construct will again be e. If -- not, one more iteration is needed. f e = if e' == e then y else f e' where y = encodeFloat (round (x * (1 % b)^^e)) e (_,e') = decodeFloat y b = floatRadix x' -- We obtain a trial exponent by doing a floating-point -- division of x's numerator by its denominator. The -- result of this division may not itself be the ultimate -- result, because of an accumulation of three rounding -- errors. (s,e) = decodeFloat (fromInteger (numerator x) `asTypeOf` x' / fromInteger (denominator x)) \end{pseudocode} Now, here's Lennart's code (which works) \begin{code} -- | Converts a 'Rational' value into any type in class 'RealFloat'. {-# SPECIALISE fromRat :: Rational -> Double, Rational -> Float #-} fromRat :: (RealFloat a) => Rational -> a -- Deal with special cases first, delegating the real work to fromRat' fromRat (n :% 0) | n > 0 = 1/0 -- +Infinity | n < 0 = -1/0 -- -Infinity | otherwise = 0/0 -- NaN fromRat (n :% d) | n > 0 = fromRat' (n :% d) | n < 0 = - fromRat' ((-n) :% d) | otherwise = encodeFloat 0 0 -- Zero -- Conversion process: -- Scale the rational number by the RealFloat base until -- it lies in the range of the mantissa (as used by decodeFloat/encodeFloat). -- Then round the rational to an Integer and encode it with the exponent -- that we got from the scaling. -- To speed up the scaling process we compute the log2 of the number to get -- a first guess of the exponent. fromRat' :: (RealFloat a) => Rational -> a -- Invariant: argument is strictly positive fromRat' x = r where b = floatRadix r p = floatDigits r (minExp0, _) = floatRange r minExp = minExp0 - p -- the real minimum exponent xMin = toRational (expt b (p-1)) xMax = toRational (expt b p) p0 = (integerLogBase b (numerator x) - integerLogBase b (denominator x) - p) `max` minExp f = if p0 < 0 then 1 % expt b (-p0) else expt b p0 % 1 (x', p') = scaleRat (toRational b) minExp xMin xMax p0 (x / f) r = encodeFloat (round x') p' -- Scale x until xMin <= x < xMax, or p (the exponent) <= minExp. scaleRat :: Rational -> Int -> Rational -> Rational -> Int -> Rational -> (Rational, Int) scaleRat b minExp xMin xMax p x | p <= minExp = (x, p) | x >= xMax = scaleRat b minExp xMin xMax (p+1) (x/b) | x < xMin = scaleRat b minExp xMin xMax (p-1) (x*b) | otherwise = (x, p) -- Exponentiation with a cache for the most common numbers. minExpt, maxExpt :: Int minExpt = 0 maxExpt = 1100 expt :: Integer -> Int -> Integer expt base n = if base == 2 && n >= minExpt && n <= maxExpt then expts!n else base^n expts :: Array Int Integer expts = array (minExpt,maxExpt) [(n,2^n) | n <- [minExpt .. maxExpt]] -- Compute the (floor of the) log of i in base b. -- Simplest way would be just divide i by b until it's smaller then b, but that would -- be very slow! We are just slightly more clever. integerLogBase :: Integer -> Integer -> Int integerLogBase b i | i < b = 0 | otherwise = doDiv (i `div` (b^l)) l where -- Try squaring the base first to cut down the number of divisions. l = 2 * integerLogBase (b*b) i doDiv :: Integer -> Int -> Int doDiv x y | x < b = y | otherwise = doDiv (x `div` b) (y+1) \end{code} %********************************************************* %* * \subsection{Floating point numeric primops} %* * %********************************************************* Definitions of the boxed PrimOps; these will be used in the case of partial applications, etc. \begin{code} plusFloat, minusFloat, timesFloat, divideFloat :: Float -> Float -> Float plusFloat (F# x) (F# y) = F# (plusFloat# x y) minusFloat (F# x) (F# y) = F# (minusFloat# x y) timesFloat (F# x) (F# y) = F# (timesFloat# x y) divideFloat (F# x) (F# y) = F# (divideFloat# x y) negateFloat :: Float -> Float negateFloat (F# x) = F# (negateFloat# x) gtFloat, geFloat, eqFloat, neFloat, ltFloat, leFloat :: Float -> Float -> Bool gtFloat (F# x) (F# y) = gtFloat# x y geFloat (F# x) (F# y) = geFloat# x y eqFloat (F# x) (F# y) = eqFloat# x y neFloat (F# x) (F# y) = neFloat# x y ltFloat (F# x) (F# y) = ltFloat# x y leFloat (F# x) (F# y) = leFloat# x y float2Int :: Float -> Int float2Int (F# x) = I# (float2Int# x) int2Float :: Int -> Float int2Float (I# x) = F# (int2Float# x) expFloat, logFloat, sqrtFloat :: Float -> Float sinFloat, cosFloat, tanFloat :: Float -> Float asinFloat, acosFloat, atanFloat :: Float -> Float sinhFloat, coshFloat, tanhFloat :: Float -> Float expFloat (F# x) = F# (expFloat# x) logFloat (F# x) = F# (logFloat# x) sqrtFloat (F# x) = F# (sqrtFloat# x) sinFloat (F# x) = F# (sinFloat# x) cosFloat (F# x) = F# (cosFloat# x) tanFloat (F# x) = F# (tanFloat# x) asinFloat (F# x) = F# (asinFloat# x) acosFloat (F# x) = F# (acosFloat# x) atanFloat (F# x) = F# (atanFloat# x) sinhFloat (F# x) = F# (sinhFloat# x) coshFloat (F# x) = F# (coshFloat# x) tanhFloat (F# x) = F# (tanhFloat# x) powerFloat :: Float -> Float -> Float powerFloat (F# x) (F# y) = F# (powerFloat# x y) -- definitions of the boxed PrimOps; these will be -- used in the case of partial applications, etc. plusDouble, minusDouble, timesDouble, divideDouble :: Double -> Double -> Double plusDouble (D# x) (D# y) = D# (x +## y) minusDouble (D# x) (D# y) = D# (x -## y) timesDouble (D# x) (D# y) = D# (x *## y) divideDouble (D# x) (D# y) = D# (x /## y) negateDouble :: Double -> Double negateDouble (D# x) = D# (negateDouble# x) gtDouble, geDouble, eqDouble, neDouble, leDouble, ltDouble :: Double -> Double -> Bool gtDouble (D# x) (D# y) = x >## y geDouble (D# x) (D# y) = x >=## y eqDouble (D# x) (D# y) = x ==## y neDouble (D# x) (D# y) = x /=## y ltDouble (D# x) (D# y) = x <## y leDouble (D# x) (D# y) = x <=## y double2Int :: Double -> Int double2Int (D# x) = I# (double2Int# x) int2Double :: Int -> Double int2Double (I# x) = D# (int2Double# x) double2Float :: Double -> Float double2Float (D# x) = F# (double2Float# x) float2Double :: Float -> Double float2Double (F# x) = D# (float2Double# x) expDouble, logDouble, sqrtDouble :: Double -> Double sinDouble, cosDouble, tanDouble :: Double -> Double asinDouble, acosDouble, atanDouble :: Double -> Double sinhDouble, coshDouble, tanhDouble :: Double -> Double expDouble (D# x) = D# (expDouble# x) logDouble (D# x) = D# (logDouble# x) sqrtDouble (D# x) = D# (sqrtDouble# x) sinDouble (D# x) = D# (sinDouble# x) cosDouble (D# x) = D# (cosDouble# x) tanDouble (D# x) = D# (tanDouble# x) asinDouble (D# x) = D# (asinDouble# x) acosDouble (D# x) = D# (acosDouble# x) atanDouble (D# x) = D# (atanDouble# x) sinhDouble (D# x) = D# (sinhDouble# x) coshDouble (D# x) = D# (coshDouble# x) tanhDouble (D# x) = D# (tanhDouble# x) powerDouble :: Double -> Double -> Double powerDouble (D# x) (D# y) = D# (x **## y) \end{code} \begin{code} foreign import ccall unsafe "__encodeFloat" encodeFloat# :: Int# -> ByteArray# -> Int -> Float foreign import ccall unsafe "__int_encodeFloat" int_encodeFloat# :: Int# -> Int -> Float foreign import ccall unsafe "isFloatNaN" isFloatNaN :: Float -> Int foreign import ccall unsafe "isFloatInfinite" isFloatInfinite :: Float -> Int foreign import ccall unsafe "isFloatDenormalized" isFloatDenormalized :: Float -> Int foreign import ccall unsafe "isFloatNegativeZero" isFloatNegativeZero :: Float -> Int foreign import ccall unsafe "__encodeDouble" encodeDouble# :: Int# -> ByteArray# -> Int -> Double foreign import ccall unsafe "isDoubleNaN" isDoubleNaN :: Double -> Int foreign import ccall unsafe "isDoubleInfinite" isDoubleInfinite :: Double -> Int foreign import ccall unsafe "isDoubleDenormalized" isDoubleDenormalized :: Double -> Int foreign import ccall unsafe "isDoubleNegativeZero" isDoubleNegativeZero :: Double -> Int \end{code} %********************************************************* %* * \subsection{Coercion rules} %* * %********************************************************* \begin{code} {-# RULES "fromIntegral/Int->Float" fromIntegral = int2Float "fromIntegral/Int->Double" fromIntegral = int2Double "realToFrac/Float->Float" realToFrac = id :: Float -> Float "realToFrac/Float->Double" realToFrac = float2Double "realToFrac/Double->Float" realToFrac = double2Float "realToFrac/Double->Double" realToFrac = id :: Double -> Double "realToFrac/Int->Double" realToFrac = int2Double -- See Note [realToFrac int-to-float] "realToFrac/Int->Float" realToFrac = int2Float -- ..ditto #-} \end{code} Note [realToFrac int-to-float] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Don found that the RULES for realToFrac/Int->Double and simliarly Float made a huge difference to some stream-fusion programs. Here's an example import Data.Array.Vector n = 40000000 main = do let c = replicateU n (2::Double) a = mapU realToFrac (enumFromToU 0 (n-1) ) :: UArr Double print (sumU (zipWithU (*) c a)) Without the RULE we get this loop body: case $wtoRational sc_sY4 of ww_aM7 { (# ww1_aM9, ww2_aMa #) -> case $wfromRat ww1_aM9 ww2_aMa of tpl_X1P { D# ipv_sW3 -> Main.$s$wfold (+# sc_sY4 1) (+# wild_X1i 1) (+## sc2_sY6 (*## 2.0 ipv_sW3)) And with the rule: Main.$s$wfold (+# sc_sXT 1) (+# wild_X1h 1) (+## sc2_sXV (*## 2.0 (int2Double# sc_sXT))) The running time of the program goes from 120 seconds to 0.198 seconds with the native backend, and 0.143 seconds with the C backend. A few more details in Trac #2251, and the patch message "Add RULES for realToFrac from Int". %********************************************************* %* * \subsection{Utils} %* * %********************************************************* \begin{code} showSignedFloat :: (RealFloat a) => (a -> ShowS) -- ^ a function that can show unsigned values -> Int -- ^ the precedence of the enclosing context -> a -- ^ the value to show -> ShowS showSignedFloat showPos p x | x < 0 || isNegativeZero x = showParen (p > 6) (showChar '-' . showPos (-x)) | otherwise = showPos x \end{code}