{-# LANGUAGE EmptyCase #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE Trustworthy #-} {-# LANGUAGE TypeOperators #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Functor.Contravariant -- Copyright : (C) 2007-2015 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : libraries@haskell.org -- Stability : provisional -- Portability : portable -- -- 'Contravariant' functors, sometimes referred to colloquially as @Cofunctor@, -- even though the dual of a 'Functor' is just a 'Functor'. As with 'Functor' -- the definition of 'Contravariant' for a given ADT is unambiguous. -- -- @since 4.12.0.0 ---------------------------------------------------------------------------- module Data.Functor.Contravariant ( -- * Contravariant Functors Contravariant(..) , phantom -- * Operators , (>$<), (>$$<), ($<) -- * Predicates , Predicate(..) -- * Comparisons , Comparison(..) , defaultComparison -- * Equivalence Relations , Equivalence(..) , defaultEquivalence , comparisonEquivalence -- * Dual arrows , Op(..) ) where import Control.Applicative import Control.Category import Data.Function (on) import Data.Functor.Product import Data.Functor.Sum import Data.Functor.Compose import Data.Monoid (Alt(..)) import Data.Proxy import GHC.Generics import Prelude hiding ((.),id) -- | The class of contravariant functors. -- -- Whereas in Haskell, one can think of a 'Functor' as containing or producing -- values, a contravariant functor is a functor that can be thought of as -- /consuming/ values. -- -- As an example, consider the type of predicate functions @a -> Bool@. One -- such predicate might be @negative x = x < 0@, which -- classifies integers as to whether they are negative. However, given this -- predicate, we can re-use it in other situations, providing we have a way to -- map values /to/ integers. For instance, we can use the @negative@ predicate -- on a person's bank balance to work out if they are currently overdrawn: -- -- @ -- newtype Predicate a = Predicate { getPredicate :: a -> Bool } -- -- instance Contravariant Predicate where -- contramap f (Predicate p) = Predicate (p . f) -- | `- First, map the input... -- `----- then apply the predicate. -- -- overdrawn :: Predicate Person -- overdrawn = contramap personBankBalance negative -- @ -- -- Any instance should be subject to the following laws: -- -- [Identity] @'contramap' 'id' = 'id'@ -- [Composition] @'contramap' (g . f) = 'contramap' f . 'contramap' g@ -- -- Note, that the second law follows from the free theorem of the type of -- 'contramap' and the first law, so you need only check that the former -- condition holds. class Contravariant f where contramap :: (a -> b) -> f b -> f a -- | Replace all locations in the output with the same value. -- The default definition is @'contramap' . 'const'@, but this may be -- overridden with a more efficient version. (>$) :: b -> f b -> f a (>$) = contramap . const -- | If @f@ is both 'Functor' and 'Contravariant' then by the time you factor -- in the laws of each of those classes, it can't actually use its argument in -- any meaningful capacity. -- -- This method is surprisingly useful. Where both instances exist and are -- lawful we have the following laws: -- -- @ -- 'fmap' f ≡ 'phantom' -- 'contramap' f ≡ 'phantom' -- @ phantom :: (Functor f, Contravariant f) => f a -> f b phantom x = () <$ x $< () infixl 4 >$, $<, >$<, >$$< -- | This is '>$' with its arguments flipped. ($<) :: Contravariant f => f b -> b -> f a ($<) = flip (>$) -- | This is an infix alias for 'contramap'. (>$<) :: Contravariant f => (a -> b) -> f b -> f a (>$<) = contramap -- | This is an infix version of 'contramap' with the arguments flipped. (>$$<) :: Contravariant f => f b -> (a -> b) -> f a (>$$<) = flip contramap deriving instance Contravariant f => Contravariant (Alt f) deriving instance Contravariant f => Contravariant (Rec1 f) deriving instance Contravariant f => Contravariant (M1 i c f) instance Contravariant V1 where contramap _ x = case x of instance Contravariant U1 where contramap _ _ = U1 instance Contravariant (K1 i c) where contramap _ (K1 c) = K1 c instance (Contravariant f, Contravariant g) => Contravariant (f :*: g) where contramap f (xs :*: ys) = contramap f xs :*: contramap f ys instance (Functor f, Contravariant g) => Contravariant (f :.: g) where contramap f (Comp1 fg) = Comp1 (fmap (contramap f) fg) instance (Contravariant f, Contravariant g) => Contravariant (f :+: g) where contramap f (L1 xs) = L1 (contramap f xs) contramap f (R1 ys) = R1 (contramap f ys) instance (Contravariant f, Contravariant g) => Contravariant (Sum f g) where contramap f (InL xs) = InL (contramap f xs) contramap f (InR ys) = InR (contramap f ys) instance (Contravariant f, Contravariant g) => Contravariant (Product f g) where contramap f (Pair a b) = Pair (contramap f a) (contramap f b) instance Contravariant (Const a) where contramap _ (Const a) = Const a instance (Functor f, Contravariant g) => Contravariant (Compose f g) where contramap f (Compose fga) = Compose (fmap (contramap f) fga) instance Contravariant Proxy where contramap _ _ = Proxy newtype Predicate a = Predicate { getPredicate :: a -> Bool } -- | A 'Predicate' is a 'Contravariant' 'Functor', because 'contramap' can -- apply its function argument to the input of the predicate. instance Contravariant Predicate where contramap f g = Predicate $ getPredicate g . f instance Semigroup (Predicate a) where Predicate p <> Predicate q = Predicate $ \a -> p a && q a instance Monoid (Predicate a) where mempty = Predicate $ const True -- | Defines a total ordering on a type as per 'compare'. -- -- This condition is not checked by the types. You must ensure that the -- supplied values are valid total orderings yourself. newtype Comparison a = Comparison { getComparison :: a -> a -> Ordering } deriving instance Semigroup (Comparison a) deriving instance Monoid (Comparison a) -- | A 'Comparison' is a 'Contravariant' 'Functor', because 'contramap' can -- apply its function argument to each input of the comparison function. instance Contravariant Comparison where contramap f g = Comparison $ on (getComparison g) f -- | Compare using 'compare'. defaultComparison :: Ord a => Comparison a defaultComparison = Comparison compare -- | This data type represents an equivalence relation. -- -- Equivalence relations are expected to satisfy three laws: -- -- [Reflexivity]: @'getEquivalence' f a a = True@ -- [Symmetry]: @'getEquivalence' f a b = 'getEquivalence' f b a@ -- [Transitivity]: -- If @'getEquivalence' f a b@ and @'getEquivalence' f b c@ are both 'True' -- then so is @'getEquivalence' f a c@. -- -- The types alone do not enforce these laws, so you'll have to check them -- yourself. newtype Equivalence a = Equivalence { getEquivalence :: a -> a -> Bool } -- | Equivalence relations are 'Contravariant', because you can -- apply the contramapped function to each input to the equivalence -- relation. instance Contravariant Equivalence where contramap f g = Equivalence $ on (getEquivalence g) f instance Semigroup (Equivalence a) where Equivalence p <> Equivalence q = Equivalence $ \a b -> p a b && q a b instance Monoid (Equivalence a) where mempty = Equivalence (\_ _ -> True) -- | Check for equivalence with '=='. -- -- Note: The instances for 'Double' and 'Float' violate reflexivity for @NaN@. defaultEquivalence :: Eq a => Equivalence a defaultEquivalence = Equivalence (==) comparisonEquivalence :: Comparison a -> Equivalence a comparisonEquivalence (Comparison p) = Equivalence $ \a b -> p a b == EQ -- | Dual function arrows. newtype Op a b = Op { getOp :: b -> a } deriving instance Semigroup a => Semigroup (Op a b) deriving instance Monoid a => Monoid (Op a b) instance Category Op where id = Op id Op f . Op g = Op (g . f) instance Contravariant (Op a) where contramap f g = Op (getOp g . f) instance Num a => Num (Op a b) where Op f + Op g = Op $ \a -> f a + g a Op f * Op g = Op $ \a -> f a * g a Op f - Op g = Op $ \a -> f a - g a abs (Op f) = Op $ abs . f signum (Op f) = Op $ signum . f fromInteger = Op . const . fromInteger instance Fractional a => Fractional (Op a b) where Op f / Op g = Op $ \a -> f a / g a recip (Op f) = Op $ recip . f fromRational = Op . const . fromRational instance Floating a => Floating (Op a b) where pi = Op $ const pi exp (Op f) = Op $ exp . f sqrt (Op f) = Op $ sqrt . f log (Op f) = Op $ log . f sin (Op f) = Op $ sin . f tan (Op f) = Op $ tan . f cos (Op f) = Op $ cos . f asin (Op f) = Op $ asin . f atan (Op f) = Op $ atan . f acos (Op f) = Op $ acos . f sinh (Op f) = Op $ sinh . f tanh (Op f) = Op $ tanh . f cosh (Op f) = Op $ cosh . f asinh (Op f) = Op $ asinh . f atanh (Op f) = Op $ atanh . f acosh (Op f) = Op $ acosh . f Op f ** Op g = Op $ \a -> f a ** g a logBase (Op f) (Op g) = Op $ \a -> logBase (f a) (g a)