{-# LANGUAGE Trustworthy #-} {-# LANGUAGE CPP, NoImplicitPrelude, BangPatterns, MagicHash, UnboxedTuples, StandaloneDeriving #-} {-# OPTIONS_HADDOCK hide #-} ----------------------------------------------------------------------------- -- | -- Module : GHC.Int -- Copyright : (c) The University of Glasgow 1997-2002 -- License : see libraries/base/LICENSE -- -- Maintainer : cvs-ghc@haskell.org -- Stability : internal -- Portability : non-portable (GHC Extensions) -- -- The sized integral datatypes, 'Int8', 'Int16', 'Int32', and 'Int64'. -- ----------------------------------------------------------------------------- #include "MachDeps.h" -- #hide module GHC.Int ( Int8(..), Int16(..), Int32(..), Int64(..), uncheckedIShiftL64#, uncheckedIShiftRA64# ) where import Data.Bits #if WORD_SIZE_IN_BITS < 64 import GHC.IntWord64 #endif import GHC.Base import GHC.Enum import GHC.Num import GHC.Real import GHC.Read import GHC.Arr import GHC.Err import GHC.Word hiding (uncheckedShiftL64#, uncheckedShiftRL64#) import GHC.Show import GHC.Float () -- for RealFrac methods ------------------------------------------------------------------------ -- type Int8 ------------------------------------------------------------------------ -- Int8 is represented in the same way as Int. Operations may assume -- and must ensure that it holds only values from its logical range. data {-# CTYPE "HsInt8" #-} Int8 = I8# Int# deriving (Eq, Ord) -- ^ 8-bit signed integer type instance Show Int8 where showsPrec p x = showsPrec p (fromIntegral x :: Int) instance Num Int8 where (I8# x#) + (I8# y#) = I8# (narrow8Int# (x# +# y#)) (I8# x#) - (I8# y#) = I8# (narrow8Int# (x# -# y#)) (I8# x#) * (I8# y#) = I8# (narrow8Int# (x# *# y#)) negate (I8# x#) = I8# (narrow8Int# (negateInt# x#)) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I8# (narrow8Int# (integerToInt i)) instance Real Int8 where toRational x = toInteger x % 1 instance Enum Int8 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int8" pred x | x /= minBound = x - 1 | otherwise = predError "Int8" toEnum i@(I# i#) | i >= fromIntegral (minBound::Int8) && i <= fromIntegral (maxBound::Int8) = I8# i# | otherwise = toEnumError "Int8" i (minBound::Int8, maxBound::Int8) fromEnum (I8# x#) = I# x# enumFrom = boundedEnumFrom enumFromThen = boundedEnumFromThen instance Integral Int8 where quot x@(I8# x#) y@(I8# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I8# (narrow8Int# (x# `quotInt#` y#)) rem (I8# x#) y@(I8# y#) | y == 0 = divZeroError | otherwise = I8# (narrow8Int# (x# `remInt#` y#)) div x@(I8# x#) y@(I8# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I8# (narrow8Int# (x# `divInt#` y#)) mod (I8# x#) y@(I8# y#) | y == 0 = divZeroError | otherwise = I8# (narrow8Int# (x# `modInt#` y#)) quotRem x@(I8# x#) y@(I8# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `quotRemInt#` y# of (# q, r #) -> (I8# (narrow8Int# q), I8# (narrow8Int# r)) divMod x@(I8# x#) y@(I8# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `divModInt#` y# of (# d, m #) -> (I8# (narrow8Int# d), I8# (narrow8Int# m)) toInteger (I8# x#) = smallInteger x# instance Bounded Int8 where minBound = -0x80 maxBound = 0x7F instance Ix Int8 where range (m,n) = [m..n] unsafeIndex (m,_) i = fromIntegral i - fromIntegral m inRange (m,n) i = m <= i && i <= n instance Read Int8 where readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s] instance Bits Int8 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} (I8# x#) .&. (I8# y#) = I8# (word2Int# (int2Word# x# `and#` int2Word# y#)) (I8# x#) .|. (I8# y#) = I8# (word2Int# (int2Word# x# `or#` int2Word# y#)) (I8# x#) `xor` (I8# y#) = I8# (word2Int# (int2Word# x# `xor#` int2Word# y#)) complement (I8# x#) = I8# (word2Int# (int2Word# x# `xor#` int2Word# (-1#))) (I8# x#) `shift` (I# i#) | i# >=# 0# = I8# (narrow8Int# (x# `iShiftL#` i#)) | otherwise = I8# (x# `iShiftRA#` negateInt# i#) (I8# x#) `shiftL` (I# i#) = I8# (narrow8Int# (x# `iShiftL#` i#)) (I8# x#) `unsafeShiftL` (I# i#) = I8# (narrow8Int# (x# `uncheckedIShiftL#` i#)) (I8# x#) `shiftR` (I# i#) = I8# (x# `iShiftRA#` i#) (I8# x#) `unsafeShiftR` (I# i#) = I8# (x# `uncheckedIShiftRA#` i#) (I8# x#) `rotate` (I# i#) | i'# ==# 0# = I8# x# | otherwise = I8# (narrow8Int# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#` (x'# `uncheckedShiftRL#` (8# -# i'#))))) where !x'# = narrow8Word# (int2Word# x#) !i'# = word2Int# (int2Word# i# `and#` 7##) bitSize _ = 8 isSigned _ = True popCount (I8# x#) = I# (word2Int# (popCnt8# (int2Word# x#))) bit = bitDefault testBit = testBitDefault {-# RULES "fromIntegral/Int8->Int8" fromIntegral = id :: Int8 -> Int8 "fromIntegral/a->Int8" fromIntegral = \x -> case fromIntegral x of I# x# -> I8# (narrow8Int# x#) "fromIntegral/Int8->a" fromIntegral = \(I8# x#) -> fromIntegral (I# x#) #-} {-# RULES "properFraction/Float->(Int8,Float)" forall x. properFraction (x :: Float) = case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int8) n, y) } "truncate/Float->Int8" forall x. truncate (x :: Float) = (fromIntegral :: Int -> Int8) (truncate x) "floor/Float->Int8" forall x. floor (x :: Float) = (fromIntegral :: Int -> Int8) (floor x) "ceiling/Float->Int8" forall x. ceiling (x :: Float) = (fromIntegral :: Int -> Int8) (ceiling x) "round/Float->Int8" forall x. round (x :: Float) = (fromIntegral :: Int -> Int8) (round x) #-} {-# RULES "properFraction/Double->(Int8,Double)" forall x. properFraction (x :: Double) = case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int8) n, y) } "truncate/Double->Int8" forall x. truncate (x :: Double) = (fromIntegral :: Int -> Int8) (truncate x) "floor/Double->Int8" forall x. floor (x :: Double) = (fromIntegral :: Int -> Int8) (floor x) "ceiling/Double->Int8" forall x. ceiling (x :: Double) = (fromIntegral :: Int -> Int8) (ceiling x) "round/Double->Int8" forall x. round (x :: Double) = (fromIntegral :: Int -> Int8) (round x) #-} ------------------------------------------------------------------------ -- type Int16 ------------------------------------------------------------------------ -- Int16 is represented in the same way as Int. Operations may assume -- and must ensure that it holds only values from its logical range. data {-# CTYPE "HsInt16" #-} Int16 = I16# Int# deriving (Eq, Ord) -- ^ 16-bit signed integer type instance Show Int16 where showsPrec p x = showsPrec p (fromIntegral x :: Int) instance Num Int16 where (I16# x#) + (I16# y#) = I16# (narrow16Int# (x# +# y#)) (I16# x#) - (I16# y#) = I16# (narrow16Int# (x# -# y#)) (I16# x#) * (I16# y#) = I16# (narrow16Int# (x# *# y#)) negate (I16# x#) = I16# (narrow16Int# (negateInt# x#)) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I16# (narrow16Int# (integerToInt i)) instance Real Int16 where toRational x = toInteger x % 1 instance Enum Int16 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int16" pred x | x /= minBound = x - 1 | otherwise = predError "Int16" toEnum i@(I# i#) | i >= fromIntegral (minBound::Int16) && i <= fromIntegral (maxBound::Int16) = I16# i# | otherwise = toEnumError "Int16" i (minBound::Int16, maxBound::Int16) fromEnum (I16# x#) = I# x# enumFrom = boundedEnumFrom enumFromThen = boundedEnumFromThen instance Integral Int16 where quot x@(I16# x#) y@(I16# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I16# (narrow16Int# (x# `quotInt#` y#)) rem (I16# x#) y@(I16# y#) | y == 0 = divZeroError | otherwise = I16# (narrow16Int# (x# `remInt#` y#)) div x@(I16# x#) y@(I16# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I16# (narrow16Int# (x# `divInt#` y#)) mod (I16# x#) y@(I16# y#) | y == 0 = divZeroError | otherwise = I16# (narrow16Int# (x# `modInt#` y#)) quotRem x@(I16# x#) y@(I16# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `quotRemInt#` y# of (# q, r #) -> (I16# (narrow16Int# q), I16# (narrow16Int# r)) divMod x@(I16# x#) y@(I16# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `divModInt#` y# of (# d, m #) -> (I16# (narrow16Int# d), I16# (narrow16Int# m)) toInteger (I16# x#) = smallInteger x# instance Bounded Int16 where minBound = -0x8000 maxBound = 0x7FFF instance Ix Int16 where range (m,n) = [m..n] unsafeIndex (m,_) i = fromIntegral i - fromIntegral m inRange (m,n) i = m <= i && i <= n instance Read Int16 where readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s] instance Bits Int16 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} (I16# x#) .&. (I16# y#) = I16# (word2Int# (int2Word# x# `and#` int2Word# y#)) (I16# x#) .|. (I16# y#) = I16# (word2Int# (int2Word# x# `or#` int2Word# y#)) (I16# x#) `xor` (I16# y#) = I16# (word2Int# (int2Word# x# `xor#` int2Word# y#)) complement (I16# x#) = I16# (word2Int# (int2Word# x# `xor#` int2Word# (-1#))) (I16# x#) `shift` (I# i#) | i# >=# 0# = I16# (narrow16Int# (x# `iShiftL#` i#)) | otherwise = I16# (x# `iShiftRA#` negateInt# i#) (I16# x#) `shiftL` (I# i#) = I16# (narrow16Int# (x# `iShiftL#` i#)) (I16# x#) `unsafeShiftL` (I# i#) = I16# (narrow16Int# (x# `uncheckedIShiftL#` i#)) (I16# x#) `shiftR` (I# i#) = I16# (x# `iShiftRA#` i#) (I16# x#) `unsafeShiftR` (I# i#) = I16# (x# `uncheckedIShiftRA#` i#) (I16# x#) `rotate` (I# i#) | i'# ==# 0# = I16# x# | otherwise = I16# (narrow16Int# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#` (x'# `uncheckedShiftRL#` (16# -# i'#))))) where !x'# = narrow16Word# (int2Word# x#) !i'# = word2Int# (int2Word# i# `and#` 15##) bitSize _ = 16 isSigned _ = True popCount (I16# x#) = I# (word2Int# (popCnt16# (int2Word# x#))) bit = bitDefault testBit = testBitDefault {-# RULES "fromIntegral/Word8->Int16" fromIntegral = \(W8# x#) -> I16# (word2Int# x#) "fromIntegral/Int8->Int16" fromIntegral = \(I8# x#) -> I16# x# "fromIntegral/Int16->Int16" fromIntegral = id :: Int16 -> Int16 "fromIntegral/a->Int16" fromIntegral = \x -> case fromIntegral x of I# x# -> I16# (narrow16Int# x#) "fromIntegral/Int16->a" fromIntegral = \(I16# x#) -> fromIntegral (I# x#) #-} {-# RULES "properFraction/Float->(Int16,Float)" forall x. properFraction (x :: Float) = case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int16) n, y) } "truncate/Float->Int16" forall x. truncate (x :: Float) = (fromIntegral :: Int -> Int16) (truncate x) "floor/Float->Int16" forall x. floor (x :: Float) = (fromIntegral :: Int -> Int16) (floor x) "ceiling/Float->Int16" forall x. ceiling (x :: Float) = (fromIntegral :: Int -> Int16) (ceiling x) "round/Float->Int16" forall x. round (x :: Float) = (fromIntegral :: Int -> Int16) (round x) #-} {-# RULES "properFraction/Double->(Int16,Double)" forall x. properFraction (x :: Double) = case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int16) n, y) } "truncate/Double->Int16" forall x. truncate (x :: Double) = (fromIntegral :: Int -> Int16) (truncate x) "floor/Double->Int16" forall x. floor (x :: Double) = (fromIntegral :: Int -> Int16) (floor x) "ceiling/Double->Int16" forall x. ceiling (x :: Double) = (fromIntegral :: Int -> Int16) (ceiling x) "round/Double->Int16" forall x. round (x :: Double) = (fromIntegral :: Int -> Int16) (round x) #-} ------------------------------------------------------------------------ -- type Int32 ------------------------------------------------------------------------ -- Int32 is represented in the same way as Int. #if WORD_SIZE_IN_BITS > 32 -- Operations may assume and must ensure that it holds only values -- from its logical range. #endif data {-# CTYPE "HsInt32" #-} Int32 = I32# Int# deriving (Eq, Ord) -- ^ 32-bit signed integer type instance Show Int32 where showsPrec p x = showsPrec p (fromIntegral x :: Int) instance Num Int32 where (I32# x#) + (I32# y#) = I32# (narrow32Int# (x# +# y#)) (I32# x#) - (I32# y#) = I32# (narrow32Int# (x# -# y#)) (I32# x#) * (I32# y#) = I32# (narrow32Int# (x# *# y#)) negate (I32# x#) = I32# (narrow32Int# (negateInt# x#)) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I32# (narrow32Int# (integerToInt i)) instance Enum Int32 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int32" pred x | x /= minBound = x - 1 | otherwise = predError "Int32" #if WORD_SIZE_IN_BITS == 32 toEnum (I# i#) = I32# i# #else toEnum i@(I# i#) | i >= fromIntegral (minBound::Int32) && i <= fromIntegral (maxBound::Int32) = I32# i# | otherwise = toEnumError "Int32" i (minBound::Int32, maxBound::Int32) #endif fromEnum (I32# x#) = I# x# enumFrom = boundedEnumFrom enumFromThen = boundedEnumFromThen instance Integral Int32 where quot x@(I32# x#) y@(I32# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I32# (narrow32Int# (x# `quotInt#` y#)) rem (I32# x#) y@(I32# y#) | y == 0 = divZeroError -- The quotRem CPU instruction fails for minBound `quotRem` -1, -- but minBound `rem` -1 is well-defined (0). We therefore -- special-case it. | y == (-1) = 0 | otherwise = I32# (narrow32Int# (x# `remInt#` y#)) div x@(I32# x#) y@(I32# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I32# (narrow32Int# (x# `divInt#` y#)) mod (I32# x#) y@(I32# y#) | y == 0 = divZeroError -- The divMod CPU instruction fails for minBound `divMod` -1, -- but minBound `mod` -1 is well-defined (0). We therefore -- special-case it. | y == (-1) = 0 | otherwise = I32# (narrow32Int# (x# `modInt#` y#)) quotRem x@(I32# x#) y@(I32# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `quotRemInt#` y# of (# q, r #) -> (I32# (narrow32Int# q), I32# (narrow32Int# r)) divMod x@(I32# x#) y@(I32# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `divModInt#` y# of (# d, m #) -> (I32# (narrow32Int# d), I32# (narrow32Int# m)) toInteger (I32# x#) = smallInteger x# instance Read Int32 where readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s] instance Bits Int32 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} (I32# x#) .&. (I32# y#) = I32# (word2Int# (int2Word# x# `and#` int2Word# y#)) (I32# x#) .|. (I32# y#) = I32# (word2Int# (int2Word# x# `or#` int2Word# y#)) (I32# x#) `xor` (I32# y#) = I32# (word2Int# (int2Word# x# `xor#` int2Word# y#)) complement (I32# x#) = I32# (word2Int# (int2Word# x# `xor#` int2Word# (-1#))) (I32# x#) `shift` (I# i#) | i# >=# 0# = I32# (narrow32Int# (x# `iShiftL#` i#)) | otherwise = I32# (x# `iShiftRA#` negateInt# i#) (I32# x#) `shiftL` (I# i#) = I32# (narrow32Int# (x# `iShiftL#` i#)) (I32# x#) `unsafeShiftL` (I# i#) = I32# (narrow32Int# (x# `uncheckedIShiftL#` i#)) (I32# x#) `shiftR` (I# i#) = I32# (x# `iShiftRA#` i#) (I32# x#) `unsafeShiftR` (I# i#) = I32# (x# `uncheckedIShiftRA#` i#) (I32# x#) `rotate` (I# i#) | i'# ==# 0# = I32# x# | otherwise = I32# (narrow32Int# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#` (x'# `uncheckedShiftRL#` (32# -# i'#))))) where !x'# = narrow32Word# (int2Word# x#) !i'# = word2Int# (int2Word# i# `and#` 31##) bitSize _ = 32 isSigned _ = True popCount (I32# x#) = I# (word2Int# (popCnt32# (int2Word# x#))) bit = bitDefault testBit = testBitDefault {-# RULES "fromIntegral/Word8->Int32" fromIntegral = \(W8# x#) -> I32# (word2Int# x#) "fromIntegral/Word16->Int32" fromIntegral = \(W16# x#) -> I32# (word2Int# x#) "fromIntegral/Int8->Int32" fromIntegral = \(I8# x#) -> I32# x# "fromIntegral/Int16->Int32" fromIntegral = \(I16# x#) -> I32# x# "fromIntegral/Int32->Int32" fromIntegral = id :: Int32 -> Int32 "fromIntegral/a->Int32" fromIntegral = \x -> case fromIntegral x of I# x# -> I32# (narrow32Int# x#) "fromIntegral/Int32->a" fromIntegral = \(I32# x#) -> fromIntegral (I# x#) #-} {-# RULES "properFraction/Float->(Int32,Float)" forall x. properFraction (x :: Float) = case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int32) n, y) } "truncate/Float->Int32" forall x. truncate (x :: Float) = (fromIntegral :: Int -> Int32) (truncate x) "floor/Float->Int32" forall x. floor (x :: Float) = (fromIntegral :: Int -> Int32) (floor x) "ceiling/Float->Int32" forall x. ceiling (x :: Float) = (fromIntegral :: Int -> Int32) (ceiling x) "round/Float->Int32" forall x. round (x :: Float) = (fromIntegral :: Int -> Int32) (round x) #-} {-# RULES "properFraction/Double->(Int32,Double)" forall x. properFraction (x :: Double) = case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int32) n, y) } "truncate/Double->Int32" forall x. truncate (x :: Double) = (fromIntegral :: Int -> Int32) (truncate x) "floor/Double->Int32" forall x. floor (x :: Double) = (fromIntegral :: Int -> Int32) (floor x) "ceiling/Double->Int32" forall x. ceiling (x :: Double) = (fromIntegral :: Int -> Int32) (ceiling x) "round/Double->Int32" forall x. round (x :: Double) = (fromIntegral :: Int -> Int32) (round x) #-} instance Real Int32 where toRational x = toInteger x % 1 instance Bounded Int32 where minBound = -0x80000000 maxBound = 0x7FFFFFFF instance Ix Int32 where range (m,n) = [m..n] unsafeIndex (m,_) i = fromIntegral i - fromIntegral m inRange (m,n) i = m <= i && i <= n ------------------------------------------------------------------------ -- type Int64 ------------------------------------------------------------------------ #if WORD_SIZE_IN_BITS < 64 data {-# CTYPE "HsInt64" #-} Int64 = I64# Int64# -- ^ 64-bit signed integer type instance Eq Int64 where (I64# x#) == (I64# y#) = x# `eqInt64#` y# (I64# x#) /= (I64# y#) = x# `neInt64#` y# instance Ord Int64 where (I64# x#) < (I64# y#) = x# `ltInt64#` y# (I64# x#) <= (I64# y#) = x# `leInt64#` y# (I64# x#) > (I64# y#) = x# `gtInt64#` y# (I64# x#) >= (I64# y#) = x# `geInt64#` y# instance Show Int64 where showsPrec p x = showsPrec p (toInteger x) instance Num Int64 where (I64# x#) + (I64# y#) = I64# (x# `plusInt64#` y#) (I64# x#) - (I64# y#) = I64# (x# `minusInt64#` y#) (I64# x#) * (I64# y#) = I64# (x# `timesInt64#` y#) negate (I64# x#) = I64# (negateInt64# x#) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I64# (integerToInt64 i) instance Enum Int64 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int64" pred x | x /= minBound = x - 1 | otherwise = predError "Int64" toEnum (I# i#) = I64# (intToInt64# i#) fromEnum x@(I64# x#) | x >= fromIntegral (minBound::Int) && x <= fromIntegral (maxBound::Int) = I# (int64ToInt# x#) | otherwise = fromEnumError "Int64" x enumFrom = integralEnumFrom enumFromThen = integralEnumFromThen enumFromTo = integralEnumFromTo enumFromThenTo = integralEnumFromThenTo instance Integral Int64 where quot x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I64# (x# `quotInt64#` y#) rem (I64# x#) y@(I64# y#) | y == 0 = divZeroError -- The quotRem CPU instruction fails for minBound `quotRem` -1, -- but minBound `rem` -1 is well-defined (0). We therefore -- special-case it. | y == (-1) = 0 | otherwise = I64# (x# `remInt64#` y#) div x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I64# (x# `divInt64#` y#) mod (I64# x#) y@(I64# y#) | y == 0 = divZeroError -- The divMod CPU instruction fails for minBound `divMod` -1, -- but minBound `mod` -1 is well-defined (0). We therefore -- special-case it. | y == (-1) = 0 | otherwise = I64# (x# `modInt64#` y#) quotRem x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = (I64# (x# `quotInt64#` y#), I64# (x# `remInt64#` y#)) divMod x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = (I64# (x# `divInt64#` y#), I64# (x# `modInt64#` y#)) toInteger (I64# x) = int64ToInteger x divInt64#, modInt64# :: Int64# -> Int64# -> Int64# -- Define div in terms of quot, being careful to avoid overflow (#7233) x# `divInt64#` y# | (x# `gtInt64#` zero) && (y# `ltInt64#` zero) = ((x# `minusInt64#` one) `quotInt64#` y#) `minusInt64#` one | (x# `ltInt64#` zero) && (y# `gtInt64#` zero) = ((x# `plusInt64#` one) `quotInt64#` y#) `minusInt64#` one | otherwise = x# `quotInt64#` y# where !zero = intToInt64# 0# !one = intToInt64# 1# x# `modInt64#` y# | (x# `gtInt64#` zero) && (y# `ltInt64#` zero) || (x# `ltInt64#` zero) && (y# `gtInt64#` zero) = if r# `neInt64#` zero then r# `plusInt64#` y# else zero | otherwise = r# where !zero = intToInt64# 0# !r# = x# `remInt64#` y# instance Read Int64 where readsPrec p s = [(fromInteger x, r) | (x, r) <- readsPrec p s] instance Bits Int64 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} (I64# x#) .&. (I64# y#) = I64# (word64ToInt64# (int64ToWord64# x# `and64#` int64ToWord64# y#)) (I64# x#) .|. (I64# y#) = I64# (word64ToInt64# (int64ToWord64# x# `or64#` int64ToWord64# y#)) (I64# x#) `xor` (I64# y#) = I64# (word64ToInt64# (int64ToWord64# x# `xor64#` int64ToWord64# y#)) complement (I64# x#) = I64# (word64ToInt64# (not64# (int64ToWord64# x#))) (I64# x#) `shift` (I# i#) | i# >=# 0# = I64# (x# `iShiftL64#` i#) | otherwise = I64# (x# `iShiftRA64#` negateInt# i#) (I64# x#) `shiftL` (I# i#) = I64# (x# `iShiftL64#` i#) (I64# x#) `unsafeShiftL` (I# i#) = I64# (x# `uncheckedIShiftL64#` i#) (I64# x#) `shiftR` (I# i#) = I64# (x# `iShiftRA64#` i#) (I64# x#) `unsafeShiftR` (I# i#) = I64# (x# `uncheckedIShiftRA64#` i#) (I64# x#) `rotate` (I# i#) | i'# ==# 0# = I64# x# | otherwise = I64# (word64ToInt64# ((x'# `uncheckedShiftL64#` i'#) `or64#` (x'# `uncheckedShiftRL64#` (64# -# i'#)))) where !x'# = int64ToWord64# x# !i'# = word2Int# (int2Word# i# `and#` 63##) bitSize _ = 64 isSigned _ = True popCount (I64# x#) = I# (word2Int# (popCnt64# (int64ToWord64# x#))) bit = bitDefault testBit = testBitDefault -- give the 64-bit shift operations the same treatment as the 32-bit -- ones (see GHC.Base), namely we wrap them in tests to catch the -- cases when we're shifting more than 64 bits to avoid unspecified -- behaviour in the C shift operations. iShiftL64#, iShiftRA64# :: Int64# -> Int# -> Int64# a `iShiftL64#` b | b >=# 64# = intToInt64# 0# | otherwise = a `uncheckedIShiftL64#` b a `iShiftRA64#` b | b >=# 64# = if a `ltInt64#` (intToInt64# 0#) then intToInt64# (-1#) else intToInt64# 0# | otherwise = a `uncheckedIShiftRA64#` b {-# RULES "fromIntegral/Int->Int64" fromIntegral = \(I# x#) -> I64# (intToInt64# x#) "fromIntegral/Word->Int64" fromIntegral = \(W# x#) -> I64# (word64ToInt64# (wordToWord64# x#)) "fromIntegral/Word64->Int64" fromIntegral = \(W64# x#) -> I64# (word64ToInt64# x#) "fromIntegral/Int64->Int" fromIntegral = \(I64# x#) -> I# (int64ToInt# x#) "fromIntegral/Int64->Word" fromIntegral = \(I64# x#) -> W# (int2Word# (int64ToInt# x#)) "fromIntegral/Int64->Word64" fromIntegral = \(I64# x#) -> W64# (int64ToWord64# x#) "fromIntegral/Int64->Int64" fromIntegral = id :: Int64 -> Int64 #-} -- No RULES for RealFrac methods if Int is smaller than Int64, we can't -- go through Int and whether going through Integer is faster is uncertain. #else -- Int64 is represented in the same way as Int. -- Operations may assume and must ensure that it holds only values -- from its logical range. data {-# CTYPE "HsInt64" #-} Int64 = I64# Int# deriving (Eq, Ord) -- ^ 64-bit signed integer type instance Show Int64 where showsPrec p x = showsPrec p (fromIntegral x :: Int) instance Num Int64 where (I64# x#) + (I64# y#) = I64# (x# +# y#) (I64# x#) - (I64# y#) = I64# (x# -# y#) (I64# x#) * (I64# y#) = I64# (x# *# y#) negate (I64# x#) = I64# (negateInt# x#) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I64# (integerToInt i) instance Enum Int64 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int64" pred x | x /= minBound = x - 1 | otherwise = predError "Int64" toEnum (I# i#) = I64# i# fromEnum (I64# x#) = I# x# enumFrom = boundedEnumFrom enumFromThen = boundedEnumFromThen instance Integral Int64 where quot x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I64# (x# `quotInt#` y#) rem (I64# x#) y@(I64# y#) | y == 0 = divZeroError -- The quotRem CPU instruction fails for minBound `quotRem` -1, -- but minBound `rem` -1 is well-defined (0). We therefore -- special-case it. | y == (-1) = 0 | otherwise = I64# (x# `remInt#` y#) div x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I64# (x# `divInt#` y#) mod (I64# x#) y@(I64# y#) | y == 0 = divZeroError -- The divMod CPU instruction fails for minBound `divMod` -1, -- but minBound `mod` -1 is well-defined (0). We therefore -- special-case it. | y == (-1) = 0 | otherwise = I64# (x# `modInt#` y#) quotRem x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `quotRemInt#` y# of (# q, r #) -> (I64# q, I64# r) divMod x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `divModInt#` y# of (# d, m #) -> (I64# d, I64# m) toInteger (I64# x#) = smallInteger x# instance Read Int64 where readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s] instance Bits Int64 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} (I64# x#) .&. (I64# y#) = I64# (word2Int# (int2Word# x# `and#` int2Word# y#)) (I64# x#) .|. (I64# y#) = I64# (word2Int# (int2Word# x# `or#` int2Word# y#)) (I64# x#) `xor` (I64# y#) = I64# (word2Int# (int2Word# x# `xor#` int2Word# y#)) complement (I64# x#) = I64# (word2Int# (int2Word# x# `xor#` int2Word# (-1#))) (I64# x#) `shift` (I# i#) | i# >=# 0# = I64# (x# `iShiftL#` i#) | otherwise = I64# (x# `iShiftRA#` negateInt# i#) (I64# x#) `shiftL` (I# i#) = I64# (x# `iShiftL#` i#) (I64# x#) `unsafeShiftL` (I# i#) = I64# (x# `uncheckedIShiftL#` i#) (I64# x#) `shiftR` (I# i#) = I64# (x# `iShiftRA#` i#) (I64# x#) `unsafeShiftR` (I# i#) = I64# (x# `uncheckedIShiftRA#` i#) (I64# x#) `rotate` (I# i#) | i'# ==# 0# = I64# x# | otherwise = I64# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#` (x'# `uncheckedShiftRL#` (64# -# i'#)))) where !x'# = int2Word# x# !i'# = word2Int# (int2Word# i# `and#` 63##) bitSize _ = 64 isSigned _ = True popCount (I64# x#) = I# (word2Int# (popCnt64# (int2Word# x#))) bit = bitDefault testBit = testBitDefault {-# RULES "fromIntegral/a->Int64" fromIntegral = \x -> case fromIntegral x of I# x# -> I64# x# "fromIntegral/Int64->a" fromIntegral = \(I64# x#) -> fromIntegral (I# x#) #-} {-# RULES "properFraction/Float->(Int64,Float)" forall x. properFraction (x :: Float) = case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int64) n, y) } "truncate/Float->Int64" forall x. truncate (x :: Float) = (fromIntegral :: Int -> Int64) (truncate x) "floor/Float->Int64" forall x. floor (x :: Float) = (fromIntegral :: Int -> Int64) (floor x) "ceiling/Float->Int64" forall x. ceiling (x :: Float) = (fromIntegral :: Int -> Int64) (ceiling x) "round/Float->Int64" forall x. round (x :: Float) = (fromIntegral :: Int -> Int64) (round x) #-} {-# RULES "properFraction/Double->(Int64,Double)" forall x. properFraction (x :: Double) = case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int64) n, y) } "truncate/Double->Int64" forall x. truncate (x :: Double) = (fromIntegral :: Int -> Int64) (truncate x) "floor/Double->Int64" forall x. floor (x :: Double) = (fromIntegral :: Int -> Int64) (floor x) "ceiling/Double->Int64" forall x. ceiling (x :: Double) = (fromIntegral :: Int -> Int64) (ceiling x) "round/Double->Int64" forall x. round (x :: Double) = (fromIntegral :: Int -> Int64) (round x) #-} uncheckedIShiftL64# :: Int# -> Int# -> Int# uncheckedIShiftL64# = uncheckedIShiftL# uncheckedIShiftRA64# :: Int# -> Int# -> Int# uncheckedIShiftRA64# = uncheckedIShiftRA# #endif instance Real Int64 where toRational x = toInteger x % 1 instance Bounded Int64 where minBound = -0x8000000000000000 maxBound = 0x7FFFFFFFFFFFFFFF instance Ix Int64 where range (m,n) = [m..n] unsafeIndex (m,_) i = fromIntegral i - fromIntegral m inRange (m,n) i = m <= i && i <= n {- Note [Order of tests] Suppose we had a definition like: quot x y | y == 0 = divZeroError | x == minBound && y == (-1) = overflowError | otherwise = x `primQuot` y Note in particular that the x == minBound test comes before the y == (-1) test. this expands to something like: case y of 0 -> divZeroError _ -> case x of -9223372036854775808 -> case y of -1 -> overflowError _ -> x `primQuot` y _ -> x `primQuot` y Now if we have the call (x `quot` 2), and quot gets inlined, then we get: case 2 of 0 -> divZeroError _ -> case x of -9223372036854775808 -> case 2 of -1 -> overflowError _ -> x `primQuot` 2 _ -> x `primQuot` 2 which simplifies to: case x of -9223372036854775808 -> x `primQuot` 2 _ -> x `primQuot` 2 Now we have a case with two identical branches, which would be eliminated (assuming it doesn't affect strictness, which it doesn't in this case), leaving the desired: x `primQuot` 2 except in the minBound branch we know what x is, and GHC cleverly does the division at compile time, giving: case x of -9223372036854775808 -> -4611686018427387904 _ -> x `primQuot` 2 So instead we use a definition like: quot x y | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError | otherwise = x `primQuot` y which gives us: case y of 0 -> divZeroError -1 -> case x of -9223372036854775808 -> overflowError _ -> x `primQuot` y _ -> x `primQuot` y for which our call (x `quot` 2) expands to: case 2 of 0 -> divZeroError -1 -> case x of -9223372036854775808 -> overflowError _ -> x `primQuot` 2 _ -> x `primQuot` 2 which simplifies to: x `primQuot` 2 as required. But we now have the same problem with a constant numerator: the call (2 `quot` y) expands to case y of 0 -> divZeroError -1 -> case 2 of -9223372036854775808 -> overflowError _ -> 2 `primQuot` y _ -> 2 `primQuot` y which simplifies to: case y of 0 -> divZeroError -1 -> 2 `primQuot` y _ -> 2 `primQuot` y which simplifies to: case y of 0 -> divZeroError -1 -> -2 _ -> 2 `primQuot` y However, constant denominators are more common than constant numerators, so the y == (-1) && x == minBound order gives us better code in the common case. -}