-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Provide new additions to base for older versions of base -- -- Provide new additions to base for older versions of base, so that you -- can use them without sacrificing backward compatibility. -- -- Currently the following is covered: -- -- @package base-compat @version 0.0.0 -- | Converting strings to values. -- -- The Text.Read library is the canonical library to import for -- Read-class facilities. For GHC only, it offers an extended and -- much improved Read class, which constitutes a proposed -- alternative to the Haskell 98 Read. In particular, writing -- parsers is easier, and the parsers are much more efficient. module Text.Read.Compat -- | Parsing of Strings, producing values. -- -- Minimal complete definition: readsPrec (or, for GHC only, -- readPrec) -- -- Derived instances of Read make the following assumptions, which -- derived instances of Show obey: -- -- -- -- For example, given the declarations -- --
--   infixr 5 :^:
--   data Tree a =  Leaf a  |  Tree a :^: Tree a
--   
-- -- the derived instance of Read in Haskell 98 is equivalent to -- --
--   instance (Read a) => Read (Tree a) where
--   
--           readsPrec d r =  readParen (d > app_prec)
--                            (\r -> [(Leaf m,t) |
--                                    ("Leaf",s) <- lex r,
--                                    (m,t) <- readsPrec (app_prec+1) s]) r
--   
--                         ++ readParen (d > up_prec)
--                            (\r -> [(u:^:v,w) |
--                                    (u,s) <- readsPrec (up_prec+1) r,
--                                    (":^:",t) <- lex s,
--                                    (v,w) <- readsPrec (up_prec+1) t]) r
--   
--             where app_prec = 10
--                   up_prec = 5
--   
-- -- Note that right-associativity of :^: is unused. -- -- The derived instance in GHC is equivalent to -- --
--   instance (Read a) => Read (Tree a) where
--   
--           readPrec = parens $ (prec app_prec $ do
--                                    Ident "Leaf" <- lexP
--                                    m <- step readPrec
--                                    return (Leaf m))
--   
--                        +++ (prec up_prec $ do
--                                    u <- step readPrec
--                                    Symbol ":^:" <- lexP
--                                    v <- step readPrec
--                                    return (u :^: v))
--   
--             where app_prec = 10
--                   up_prec = 5
--   
--           readListPrec = readListPrecDefault
--   
class Read a readsPrec :: Read a => Int -> ReadS a readList :: Read a => ReadS [a] readPrec :: Read a => ReadPrec a readListPrec :: Read a => ReadPrec [a] -- | A parser for a type a, represented as a function that takes a -- String and returns a list of possible parses as -- (a,String) pairs. -- -- Note that this kind of backtracking parser is very inefficient; -- reading a large structure may be quite slow (cf ReadP). type ReadS a = String -> [(a, String)] -- | equivalent to readsPrec with a precedence of 0. reads :: Read a => ReadS a -- | The read function reads input from a string, which must be -- completely consumed by the input process. read :: Read a => String -> a -- | readParen True p parses what p parses, -- but surrounded with parentheses. -- -- readParen False p parses what p -- parses, but optionally surrounded with parentheses. readParen :: Bool -> ReadS a -> ReadS a -- | The lex function reads a single lexeme from the input, -- discarding initial white space, and returning the characters that -- constitute the lexeme. If the input string contains only white space, -- lex returns a single successful `lexeme' consisting of the -- empty string. (Thus lex "" = [("","")].) If there is -- no legal lexeme at the beginning of the input string, lex fails -- (i.e. returns []). -- -- This lexer is not completely faithful to the Haskell lexical syntax in -- the following respects: -- -- lex :: ReadS String -- | Haskell lexemes. data Lexeme :: * -- | Character literal Char :: Char -> Lexeme -- | String literal, with escapes interpreted String :: String -> Lexeme -- | Punctuation or reserved symbol, e.g. (, :: Punc :: String -> Lexeme -- | Haskell identifier, e.g. foo, Baz Ident :: String -> Lexeme -- | Haskell symbol, e.g. >>, :% Symbol :: String -> Lexeme Number :: Number -> Lexeme EOF :: Lexeme -- | Parse a single lexeme lexP :: ReadPrec Lexeme -- | (parens p) parses "P", "(P0)", "((P0))", etc, where -- p parses "P" in the current precedence context and parses -- "P0" in precedence context zero parens :: ReadPrec a -> ReadPrec a -- | A possible replacement definition for the readList method (GHC -- only). This is only needed for GHC, and even then only for Read -- instances where readListPrec isn't defined as -- readListPrecDefault. readListDefault :: Read a => ReadS [a] -- | A possible replacement definition for the readListPrec method, -- defined using readPrec (GHC only). readListPrecDefault :: Read a => ReadPrec [a] -- | Parse a string using the Read instance. Succeeds if there is -- exactly one valid result. A Left value indicates a parse error. readEither :: Read a => String -> Either String a -- | Parse a string using the Read instance. Succeeds if there is -- exactly one valid result. readMaybe :: Read a => String -> Maybe a -- | Miscellaneous information about the system environment. module System.Environment.Compat -- | Computation getArgs returns a list of the program's command -- line arguments (not including the program name). getArgs :: IO [String] -- | Computation getProgName returns the name of the program as it -- was invoked. -- -- However, this is hard-to-impossible to implement on some non-Unix -- OSes, so instead, for maximum portability, we just return the leafname -- of the program as invoked. Even then there are some differences -- between platforms: on Windows, for example, a program invoked as foo -- is probably really FOO.EXE, and that is what -- getProgName will return. getProgName :: IO String -- | Returns the absolute pathname of the current executable. -- -- Note that for scripts and interactive sessions, this is the path to -- the interpreter (e.g. ghci.) getExecutablePath :: IO FilePath -- | Computation getEnv var returns the value of the -- environment variable var. For the inverse, POSIX users can -- use putEnv. -- -- This computation may fail with: -- -- getEnv :: String -> IO String -- | Return the value of the environment variable var, or -- Nothing if there is no such value. -- -- For POSIX users, this is equivalent to getEnv. lookupEnv :: String -> IO (Maybe String) -- | withArgs args act - while executing action -- act, have getArgs return args. withArgs :: [String] -> IO a -> IO a -- | withProgName name act - while executing action -- act, have getProgName return name. withProgName :: String -> IO a -> IO a -- | getEnvironment retrieves the entire environment as a list of -- (key,value) pairs. -- -- If an environment entry does not contain an '=' character, -- the key is the whole entry and the value is the -- empty string. getEnvironment :: IO [(String, String)]