-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | A compatibility layer for base -- -- Provides functions available in later versions of base to a -- wider range of compilers, without requiring you to use CPP pragmas in -- your code. See the README for what is covered. Also see the -- changelog for recent changes. -- -- Note that base-compat does not add any orphan instances. -- There is a separate package, base-orphans, for that. -- -- In addition, base-compat does not backport any data types or -- type classes. See this section of the README for more -- info. -- -- base-compat is designed to have zero dependencies. For a -- version of base-compat that depends on compatibility -- libraries for a wider support window, see the -- base-compat-batteries package. Most of the modules in -- this library have the same names as in base-compat-batteries -- to make it easier to switch between the two. There also exist versions -- of each module with the suffix .Repl, which are distinct from -- anything in base-compat-batteries, to allow for easier use in -- GHCi. @package base-compat @version 0.13.1 module Control.Concurrent.Compat -- | Fork a thread and call the supplied function when the thread is about -- to terminate, with an exception or a returned value. The function is -- called with asynchronous exceptions masked. -- --
-- forkFinally action and_then = -- mask $ \restore -> -- forkIO $ try (restore action) >>= and_then ---- -- This function is useful for informing the parent when a child -- terminates, for example. forkFinally :: IO a -> (Either SomeException a -> IO ()) -> IO ThreadId -- | Like forkIOWithUnmask, but the child thread is a bound thread, -- as with forkOS. forkOSWithUnmask :: ((forall a. () => IO a -> IO a) -> IO ()) -> IO ThreadId -- | Reexports Control.Concurrent.Compat from a globally unique -- namespace. module Control.Concurrent.Compat.Repl module Control.Concurrent.MVar.Compat -- | Like withMVar, but the IO action in the second -- argument is executed with asynchronous exceptions masked. withMVarMasked :: MVar a -> (a -> IO b) -> IO b -- | Reexports Control.Concurrent.MVar.Compat from a globally unique -- namespace. module Control.Concurrent.MVar.Compat.Repl module Control.Exception.Compat -- | Throw an exception. Exceptions may be thrown from purely functional -- code, but may only be caught within the IO monad. throw :: forall (r :: RuntimeRep) (a :: TYPE r) e. Exception e => e -> a -- | Reexports Control.Exception.Compat from a globally unique -- namespace. module Control.Exception.Compat.Repl module Control.Monad.Compat -- | Conditional failure of Alternative computations. Defined by -- --
-- guard True = pure () -- guard False = empty ---- --
-- >>> safeDiv 4 0 -- Nothing ---- --
-- >>> safeDiv 4 2 -- Just 2 ---- -- A definition of safeDiv using guards, but not guard: -- --
-- safeDiv :: Int -> Int -> Maybe Int -- safeDiv x y | y /= 0 = Just (x `div` y) -- | otherwise = Nothing ---- -- A definition of safeDiv using guard and Monad -- do-notation: -- --
-- safeDiv :: Int -> Int -> Maybe Int -- safeDiv x y = do -- guard (y /= 0) -- return (x `div` y) --guard :: Alternative f => Bool -> f () -- | The join function is the conventional monad join operator. It -- is used to remove one level of monadic structure, projecting its bound -- argument into the outer level. -- -- 'join bss' can be understood as the do -- expression -- --
-- do bs <- bss -- bs ---- --
-- atomically :: STM a -> IO a ---- -- is used to run STM transactions atomically. So, by specializing -- the types of atomically and join to -- --
-- atomically :: STM (IO b) -> IO (IO b) -- join :: IO (IO b) -> IO b ---- -- we can compose them as -- --
-- join . atomically :: STM (IO b) -> IO b ---- -- to run an STM transaction and the IO action it returns. join :: Monad m => m (m a) -> m a -- | The Monad class defines the basic operations over a -- monad, a concept from a branch of mathematics known as -- category theory. From the perspective of a Haskell programmer, -- however, it is best to think of a monad as an abstract datatype -- of actions. Haskell's do expressions provide a convenient -- syntax for writing monadic expressions. -- -- Instances of Monad should satisfy the following: -- --
-- do a <- as -- bs a --(>>=) :: Monad m => m a -> (a -> m b) -> m b -- | Sequentially compose two actions, discarding any value produced by the -- first, like sequencing operators (such as the semicolon) in imperative -- languages. -- -- 'as >> bs' can be understood as the do -- expression -- --
-- do as -- bs --(>>) :: Monad m => m a -> m b -> m b -- | Inject a value into the monadic type. return :: Monad m => a -> m a infixl 1 >> infixl 1 >>= -- | A type f is a Functor if it provides a function fmap -- which, given any types a and b lets you apply any -- function from (a -> b) to turn an f a into an -- f b, preserving the structure of f. Furthermore -- f needs to adhere to the following: -- -- -- -- Note, that the second law follows from the free theorem of the type -- fmap and the first law, so you need only check that the former -- condition holds. class Functor (f :: Type -> Type) -- | fmap is used to apply a function of type (a -> b) -- to a value of type f a, where f is a functor, to produce a -- value of type f b. Note that for any type constructor with -- more than one parameter (e.g., Either), only the last type -- parameter can be modified with fmap (e.g., b in -- `Either a b`). -- -- Some type constructors with two parameters or more have a -- Bifunctor instance that allows both the last and the -- penultimate parameters to be mapped over. -- --
-- >>> fmap show Nothing -- Nothing -- -- >>> fmap show (Just 3) -- Just "3" ---- -- Convert from an Either Int Int to an Either Int -- String using show: -- --
-- >>> fmap show (Left 17) -- Left 17 -- -- >>> fmap show (Right 17) -- Right "17" ---- -- Double each element of a list: -- --
-- >>> fmap (*2) [1,2,3] -- [2,4,6] ---- -- Apply even to the second element of a pair: -- --
-- >>> fmap even (2,2) -- (2,True) ---- -- It may seem surprising that the function is only applied to the last -- element of the tuple compared to the list example above which applies -- it to every element in the list. To understand, remember that tuples -- are type constructors with multiple type parameters: a tuple of 3 -- elements (a,b,c) can also be written (,,) a b c and -- its Functor instance is defined for Functor ((,,) a -- b) (i.e., only the third parameter is free to be mapped over with -- fmap). -- -- It explains why fmap can be used with tuples containing -- values of different types as in the following example: -- --
-- >>> fmap even ("hello", 1.0, 4)
-- ("hello",1.0,True)
--
fmap :: Functor f => (a -> b) -> f a -> f b
-- | Replace all locations in the input with the same value. The default
-- definition is fmap . const, but this may be
-- overridden with a more efficient version.
(<$) :: Functor f => a -> f b -> f a
infixl 4 <$
-- | When a value is bound in do-notation, the pattern on the left
-- hand side of <- might not match. In this case, this class
-- provides a function to recover.
--
-- A Monad without a MonadFail instance may only be used in
-- conjunction with pattern that always match, such as newtypes, tuples,
-- data types with only a single data constructor, and irrefutable
-- patterns (~pat).
--
-- Instances of MonadFail should satisfy the following law:
-- fail s should be a left zero for >>=,
--
-- -- fail s >>= f = fail s ---- -- If your Monad is also MonadPlus, a popular definition is -- --
-- fail _ = mzero --class Monad m => MonadFail (m :: Type -> Type) fail :: MonadFail m => String -> m a -- | Map each element of a structure to a monadic action, evaluate these -- actions from left to right, and collect the results. For a version -- that ignores the results see mapM_. -- --
-- >>> sequence $ Right [1,2,3,4] -- [Right 1,Right 2,Right 3,Right 4] ---- --
-- >>> sequence $ [Right 1,Right 2,Right 3,Right 4] -- Right [1,2,3,4] ---- -- The following examples demonstrate short circuit behavior for -- sequence. -- --
-- >>> sequence $ Left [1,2,3,4] -- Left [1,2,3,4] ---- --
-- >>> sequence $ [Left 0, Right 1,Right 2,Right 3,Right 4] -- Left 0 --sequence :: (Traversable t, Monad m) => t (m a) -> m (t a) -- | zipWithM_ is the extension of zipWithM which ignores the -- final result. zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m () -- | The zipWithM function generalizes zipWith to arbitrary -- applicative functors. zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c] -- | The reverse of when. unless :: Applicative f => Bool -> f () -> f () -- | Like replicateM, but discards the result. -- --
-- >>> replicateM_ 3 (putStrLn "a") -- a -- a -- a --replicateM_ :: Applicative m => Int -> m a -> m () -- | replicateM n act performs the action act -- n times, and then returns the list of results: -- --
-- >>> import Control.Monad.State -- -- >>> runState (replicateM 3 $ state $ \s -> (s, s + 1)) 1 -- ([1,2,3],4) --replicateM :: Applicative m => Int -> m a -> m [a] -- | Direct MonadPlus equivalent of filter. -- --
-- filter = ( mfilter :: (a -> Bool) -> [a] -> [a] ) ---- -- An example using mfilter with the Maybe monad: -- --
-- >>> mfilter odd (Just 1) -- Just 1 -- -- >>> mfilter odd (Just 2) -- Nothing --mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a -- | The mapAndUnzipM function maps its first argument over a list, -- returning the result as a pair of lists. This function is mainly used -- with complicated data structures or a state monad. mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c]) -- | Repeat an action indefinitely. -- --
-- echoServer :: Socket -> IO () -- echoServer socket = forever $ do -- client <- accept socket -- forkFinally (echo client) (\_ -> hClose client) -- where -- echo :: Handle -> IO () -- echo client = forever $ -- hGetLine client >>= hPutStrLn client ---- -- Note that "forever" isn't necessarily non-terminating. If the action -- is in a MonadPlus and short-circuits after some number -- of iterations. then forever actually returns -- mzero, effectively short-circuiting its caller. forever :: Applicative f => f a -> f b -- | Like foldM, but discards the result. foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m () -- | The foldM function is analogous to foldl, except that -- its result is encapsulated in a monad. Note that foldM works -- from left-to-right over the list arguments. This could be an issue -- where (>>) and the `folded function' are not -- commutative. -- --
-- foldM f a1 [x1, x2, ..., xm] -- -- == -- -- do -- a2 <- f a1 x1 -- a3 <- f a2 x2 -- ... -- f am xm ---- -- If right-to-left evaluation is required, the input list should be -- reversed. -- -- Note: foldM is the same as foldlM foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b -- | This generalizes the list-based filter function. filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] -- | Left-to-right composition of Kleisli arrows. -- -- '(bs >=> cs) a' can be understood as the -- do expression -- --
-- do b <- bs a -- cs b --(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 >=> -- | Right-to-left composition of Kleisli arrows. -- (>=>), with the arguments flipped. -- -- Note how this operator resembles function composition -- (.): -- --
-- (.) :: (b -> c) -> (a -> b) -> a -> c -- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c --(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c infixr 1 <=< -- | Strict version of <$>. (<$!>) :: Monad m => (a -> b) -> m a -> m b infixl 4 <$!> -- | forM is mapM with its arguments flipped. For a version -- that ignores the results see forM_. forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) -- | Evaluate each monadic action in the structure from left to right, and -- ignore the results. For a version that doesn't ignore the results see -- sequence. -- -- sequence_ is just like sequenceA_, but specialised to -- monadic actions. sequence_ :: (Foldable t, Monad m) => t (m a) -> m () -- | The sum of a collection of actions, generalizing concat. -- -- msum is just like asum, but specialised to -- MonadPlus. msum :: (Foldable t, MonadPlus m) => t (m a) -> m a -- | Map each element of a structure to a monadic action, evaluate these -- actions from left to right, and ignore the results. For a version that -- doesn't ignore the results see mapM. -- -- mapM_ is just like traverse_, but specialised to monadic -- actions. mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m () -- | forM_ is mapM_ with its arguments flipped. For a version -- that doesn't ignore the results see forM. -- -- forM_ is just like for_, but specialised to monadic -- actions. forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m () -- | void value discards or ignores the result of -- evaluation, such as the return value of an IO action. -- --
-- >>> void Nothing -- Nothing -- -- >>> void (Just 3) -- Just () ---- -- Replace the contents of an Either Int -- Int with unit, resulting in an Either -- Int (): -- --
-- >>> void (Left 8675309) -- Left 8675309 -- -- >>> void (Right 8675309) -- Right () ---- -- Replace every element of a list with unit: -- --
-- >>> void [1,2,3] -- [(),(),()] ---- -- Replace the second element of a pair with unit: -- --
-- >>> void (1,2) -- (1,()) ---- -- Discard the result of an IO action: -- --
-- >>> mapM print [1,2] -- 1 -- 2 -- [(),()] -- -- >>> void $ mapM print [1,2] -- 1 -- 2 --void :: Functor f => f a -> f () -- | Monads that also support choice and failure. class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) -- | The identity of mplus. It should also satisfy the equations -- --
-- mzero >>= f = mzero -- v >> mzero = mzero ---- -- The default definition is -- --
-- mzero = empty --mzero :: MonadPlus m => m a -- | An associative operation. The default definition is -- --
-- mplus = (<|>) --mplus :: MonadPlus m => m a -> m a -> m a -- | Conditional execution of Applicative expressions. For example, -- --
-- when debug (putStrLn "Debugging") ---- -- will output the string Debugging if the Boolean value -- debug is True, and otherwise do nothing. when :: Applicative f => Bool -> f () -> f () -- | Promote a function to a monad, scanning the monadic arguments from -- left to right (cf. liftM2). liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r -- | Promote a function to a monad, scanning the monadic arguments from -- left to right (cf. liftM2). liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r -- | Promote a function to a monad, scanning the monadic arguments from -- left to right (cf. liftM2). liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r -- | Promote a function to a monad, scanning the monadic arguments from -- left to right. For example, -- --
-- liftM2 (+) [0,1] [0,2] = [0,2,1,3] -- liftM2 (+) (Just 1) Nothing = Nothing --liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r -- | Promote a function to a monad. liftM :: Monad m => (a1 -> r) -> m a1 -> m r -- | In many situations, the liftM operations can be replaced by -- uses of ap, which promotes function application. -- --
-- return f `ap` x1 `ap` ... `ap` xn ---- -- is equivalent to -- --
-- liftMn f x1 x2 ... xn --ap :: Monad m => m (a -> b) -> m a -> m b -- | Same as >>=, but with the arguments interchanged. (=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 =<< -- | The Monad class defines the basic operations over a -- monad, a concept from a branch of mathematics known as -- category theory. From the perspective of a Haskell programmer, -- however, it is best to think of a monad as an abstract datatype -- of actions. Haskell's do expressions provide a convenient -- syntax for writing monadic expressions. -- -- Instances of Monad should satisfy the following: -- --
-- fail s >>= f = fail s ---- -- If your Monad is also MonadPlus, a popular definition is -- --
-- fail _ = mzero --class Monad m => MonadFail (m :: Type -> Type) fail :: MonadFail m => String -> m a -- | Monads that also support choice and failure. class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) -- | The identity of mplus. It should also satisfy the equations -- --
-- mzero >>= f = mzero -- v >> mzero = mzero ---- -- The default definition is -- --
-- mzero = empty --mzero :: MonadPlus m => m a -- | An associative operation. The default definition is -- --
-- mplus = (<|>) --mplus :: MonadPlus m => m a -> m a -> m a -- | Reexports Control.Monad.Compat from a globally unique -- namespace. module Control.Monad.Compat.Repl module Control.Monad.Fail.Compat -- | Reexports Control.Monad.Fail.Compat from a globally unique -- namespace. module Control.Monad.Fail.Compat.Repl module Control.Monad.IO.Class.Compat -- | Reexports Control.Monad.IO.Class.Compat from a globally unique -- namespace. module Control.Monad.IO.Class.Compat.Repl module Control.Monad.ST.Lazy.Unsafe.Compat unsafeInterleaveST :: ST s a -> ST s a unsafeIOToST :: IO a -> ST s a -- | Reexports Control.Monad.ST.Lazy.Unsafe.Compat from a globally -- unique namespace. module Control.Monad.ST.Lazy.Unsafe.Compat.Repl module Control.Monad.ST.Unsafe.Compat -- | unsafeInterleaveST allows an ST computation to be -- deferred lazily. When passed a value of type ST a, the -- ST computation will only be performed when the value of the -- a is demanded. unsafeInterleaveST :: ST s a -> ST s a -- | Convert an IO action to an ST action. This relies on -- IO and ST having the same representation modulo the -- constraint on the state thread type parameter. unsafeIOToST :: IO a -> ST s a -- | Convert an ST action to an IO action. This relies on -- IO and ST having the same representation modulo the -- constraint on the state thread type parameter. -- -- For an example demonstrating why this is unsafe, see -- https://mail.haskell.org/pipermail/haskell-cafe/2009-April/060719.html unsafeSTToIO :: ST s a -> IO a -- | Reexports Control.Monad.ST.Unsafe.Compat from a globally unique -- namespace. module Control.Monad.ST.Unsafe.Compat.Repl module Data.Bifoldable.Compat -- | Reexports Data.Bifoldable.Compat from a globally unique -- namespace. module Data.Bifoldable.Compat.Repl module Data.Bifoldable1.Compat -- | Reexports Data.Bifoldable1.Compat from a globally unique -- namespace. module Data.Bifoldable1.Compat.Repl module Data.Bifunctor.Compat -- | Reexports Data.Bifunctor.Compat from a globally unique -- namespace. module Data.Bifunctor.Compat.Repl module Data.Bitraversable.Compat -- | Reexports Data.Bitraversable.Compat from a globally unique -- namespace. module Data.Bitraversable.Compat.Repl module Data.Bits.Compat -- | Default implementation for bit. -- -- Note that: bitDefault i = 1 shiftL i bitDefault :: (Bits a, Num a) => Int -> a -- | Default implementation for testBit. -- -- Note that: testBitDefault x i = (x .&. bit i) /= 0 testBitDefault :: (Bits a, Num a) => a -> Int -> Bool -- | Default implementation for popCount. -- -- This implementation is intentionally naive. Instances are expected to -- provide an optimized implementation for their size. popCountDefault :: (Bits a, Num a) => a -> Int -- | Infix version of xor. -- -- Since: 4.17 (.^.) :: Bits a => a -> a -> a infixl 6 .^. -- | Infix version of shiftR. -- -- Since: 4.17 (.>>.) :: Bits a => a -> Int -> a infixl 8 .>>. -- | Infix version of shiftL. -- -- Since: 4.17 (.<<.) :: Bits a => a -> Int -> a infixl 8 .<<. -- | Infix version of unsafeShiftR. -- -- Since: 4.17 (!>>.) :: Bits a => a -> Int -> a infixl 8 !>>. -- | Infix version of unsafeShiftL. -- -- Since: 4.17 (!<<.) :: Bits a => a -> Int -> a infixl 8 !<<. -- | Attempt to convert an Integral type a to an -- Integral type b using the size of the types as -- measured by Bits methods. -- -- A simpler version of this function is: -- --
-- toIntegral :: (Integral a, Integral b) => a -> Maybe b -- toIntegral x -- | toInteger x == y = Just (fromInteger y) -- | otherwise = Nothing -- where -- y = toInteger x ---- -- This version requires going through Integer, which can be -- inefficient. However, toIntegralSized is optimized to allow -- GHC to statically determine the relative type sizes (as measured by -- bitSizeMaybe and isSigned) and avoid going through -- Integer for many types. (The implementation uses -- fromIntegral, which is itself optimized with rules for -- base types but may go through Integer for some type -- pairs.) toIntegralSized :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b -- | A more concise version of complement zeroBits. -- --
-- >>> complement (zeroBits :: Word) == (oneBits :: Word) -- True ---- --
-- >>> complement (oneBits :: Word) == (zeroBits :: Word) -- True ---- --
-- >>> bool "foo" "bar" True -- "bar" -- -- >>> bool "foo" "bar" False -- "foo" ---- -- Confirm that bool x y p and if p then y else -- x are equivalent: -- --
-- >>> let p = True; x = "bar"; y = "foo" -- -- >>> bool x y p == if p then y else x -- True -- -- >>> let p = False -- -- >>> bool x y p == if p then y else x -- True --bool :: a -> a -> Bool -> a -- | Reexports Data.Bool.Compat from a globally unique namespace. module Data.Bool.Compat.Repl module Data.Complex.Compat -- | Reexports Data.Complex.Compat from a globally unique namespace. module Data.Complex.Compat.Repl module Data.Either.Compat -- | Return True if the given value is a Left-value, -- False otherwise. -- --
-- >>> isLeft (Left "foo") -- True -- -- >>> isLeft (Right 3) -- False ---- -- Assuming a Left value signifies some sort of error, we can use -- isLeft to write a very simple error-reporting function that -- does absolutely nothing in the case of success, and outputs "ERROR" if -- any error occurred. -- -- This example shows how isLeft might be used to avoid pattern -- matching when one does not care about the value contained in the -- constructor: -- --
-- >>> import Control.Monad ( when ) -- -- >>> let report e = when (isLeft e) $ putStrLn "ERROR" -- -- >>> report (Right 1) -- -- >>> report (Left "parse error") -- ERROR --isLeft :: Either a b -> Bool -- | Return True if the given value is a Right-value, -- False otherwise. -- --
-- >>> isRight (Left "foo") -- False -- -- >>> isRight (Right 3) -- True ---- -- Assuming a Left value signifies some sort of error, we can use -- isRight to write a very simple reporting function that only -- outputs "SUCCESS" when a computation has succeeded. -- -- This example shows how isRight might be used to avoid pattern -- matching when one does not care about the value contained in the -- constructor: -- --
-- >>> import Control.Monad ( when ) -- -- >>> let report e = when (isRight e) $ putStrLn "SUCCESS" -- -- >>> report (Left "parse error") -- -- >>> report (Right 1) -- SUCCESS --isRight :: Either a b -> Bool -- | Return the contents of a Left-value or a default value -- otherwise. -- --
-- >>> fromLeft 1 (Left 3) -- 3 -- -- >>> fromLeft 1 (Right "foo") -- 1 --fromLeft :: a -> Either a b -> a -- | Return the contents of a Right-value or a default value -- otherwise. -- --
-- >>> fromRight 1 (Right 3) -- 3 -- -- >>> fromRight 1 (Left "foo") -- 1 --fromRight :: b -> Either a b -> b -- | Reexports Data.Either.Compat from a globally unique namespace. module Data.Either.Compat.Repl module Data.Foldable.Compat -- | Reexports Data.Foldable.Compat from a globally unique -- namespace. module Data.Foldable.Compat.Repl module Data.Foldable1.Compat -- | Reexports Data.Foldable1.Compat from a globally unique -- namespace. module Data.Foldable1.Compat.Repl module Data.Functor.Compat -- | A type f is a Functor if it provides a function fmap -- which, given any types a and b lets you apply any -- function from (a -> b) to turn an f a into an -- f b, preserving the structure of f. Furthermore -- f needs to adhere to the following: -- -- -- -- Note, that the second law follows from the free theorem of the type -- fmap and the first law, so you need only check that the former -- condition holds. class Functor (f :: Type -> Type) -- | fmap is used to apply a function of type (a -> b) -- to a value of type f a, where f is a functor, to produce a -- value of type f b. Note that for any type constructor with -- more than one parameter (e.g., Either), only the last type -- parameter can be modified with fmap (e.g., b in -- `Either a b`). -- -- Some type constructors with two parameters or more have a -- Bifunctor instance that allows both the last and the -- penultimate parameters to be mapped over. -- --
-- >>> fmap show Nothing -- Nothing -- -- >>> fmap show (Just 3) -- Just "3" ---- -- Convert from an Either Int Int to an Either Int -- String using show: -- --
-- >>> fmap show (Left 17) -- Left 17 -- -- >>> fmap show (Right 17) -- Right "17" ---- -- Double each element of a list: -- --
-- >>> fmap (*2) [1,2,3] -- [2,4,6] ---- -- Apply even to the second element of a pair: -- --
-- >>> fmap even (2,2) -- (2,True) ---- -- It may seem surprising that the function is only applied to the last -- element of the tuple compared to the list example above which applies -- it to every element in the list. To understand, remember that tuples -- are type constructors with multiple type parameters: a tuple of 3 -- elements (a,b,c) can also be written (,,) a b c and -- its Functor instance is defined for Functor ((,,) a -- b) (i.e., only the third parameter is free to be mapped over with -- fmap). -- -- It explains why fmap can be used with tuples containing -- values of different types as in the following example: -- --
-- >>> fmap even ("hello", 1.0, 4)
-- ("hello",1.0,True)
--
fmap :: Functor f => (a -> b) -> f a -> f b
-- | Replace all locations in the input with the same value. The default
-- definition is fmap . const, but this may be
-- overridden with a more efficient version.
(<$) :: Functor f => a -> f b -> f a
infixl 4 <$
-- | Flipped version of <$.
--
-- -- >>> Nothing $> "foo" -- Nothing -- -- >>> Just 90210 $> "foo" -- Just "foo" ---- -- Replace the contents of an Either Int -- Int with a constant String, resulting in an -- Either Int String: -- --
-- >>> Left 8675309 $> "foo" -- Left 8675309 -- -- >>> Right 8675309 $> "foo" -- Right "foo" ---- -- Replace each element of a list with a constant String: -- --
-- >>> [1,2,3] $> "foo" -- ["foo","foo","foo"] ---- -- Replace the second element of a pair with a constant String: -- --
-- >>> (1,2) $> "foo" -- (1,"foo") --($>) :: Functor f => f a -> b -> f b infixl 4 $> -- | void value discards or ignores the result of -- evaluation, such as the return value of an IO action. -- --
-- >>> void Nothing -- Nothing -- -- >>> void (Just 3) -- Just () ---- -- Replace the contents of an Either Int -- Int with unit, resulting in an Either -- Int (): -- --
-- >>> void (Left 8675309) -- Left 8675309 -- -- >>> void (Right 8675309) -- Right () ---- -- Replace every element of a list with unit: -- --
-- >>> void [1,2,3] -- [(),(),()] ---- -- Replace the second element of a pair with unit: -- --
-- >>> void (1,2) -- (1,()) ---- -- Discard the result of an IO action: -- --
-- >>> mapM print [1,2] -- 1 -- 2 -- [(),()] -- -- >>> void $ mapM print [1,2] -- 1 -- 2 --void :: Functor f => f a -> f () -- | Flipped version of <$>. -- --
-- (<&>) = flip fmap ---- --
-- >>> Just 2 <&> (+1) -- Just 3 ---- --
-- >>> [1,2,3] <&> (+1) -- [2,3,4] ---- --
-- >>> Right 3 <&> (+1) -- Right 4 --(<&>) :: Functor f => f a -> (a -> b) -> f b infixl 1 <&> -- | Generalization of Data.List.unzip. -- -- Since: 4.19.0.0 unzip :: Functor f => f (a, b) -> (f a, f b) -- | Reexports Data.Functor.Compat from a globally unique namespace. module Data.Functor.Compat.Repl module Data.Functor.Compose.Compat -- | Reexports Data.Functor.Compose.Compat from a globally unique -- namespace. module Data.Functor.Compose.Compat.Repl module Data.Functor.Const.Compat -- | The Const functor. newtype Const a (b :: k) Const :: a -> Const a (b :: k) [getConst] :: Const a (b :: k) -> a -- | Reexports Data.Functor.Const.Compat from a globally unique -- namespace. module Data.Functor.Const.Compat.Repl module Data.Functor.Contravariant.Compat -- | Reexports Data.Functor.Contravariant.Compat from a globally -- unique namespace. module Data.Functor.Contravariant.Compat.Repl module Data.Functor.Identity.Compat -- | Reexports Data.Functor.Identity.Compat from a globally unique -- namespace. module Data.Functor.Identity.Compat.Repl module Data.Functor.Product.Compat -- | Reexports Data.Functor.Product.Compat from a globally unique -- namespace. module Data.Functor.Product.Compat.Repl module Data.Functor.Sum.Compat -- | Reexports Data.Functor.Sum.Compat from a globally unique -- namespace. module Data.Functor.Sum.Compat.Repl module Data.IORef.Compat -- | Strict version of modifyIORef modifyIORef' :: IORef a -> (a -> a) -> IO () -- | Strict version of atomicModifyIORef. This forces both the value -- stored in the IORef and the value returned. The new value is -- installed in the IORef before the returned value is forced. So -- --
-- atomicModifyIORef' ref (x -> (x+1, undefined)) ---- -- will increment the IORef and then throw an exception in the -- calling thread. atomicModifyIORef' :: IORef a -> (a -> (a, b)) -> IO b -- | Variant of writeIORef with the "barrier to reordering" property -- that atomicModifyIORef has. atomicWriteIORef :: IORef a -> a -> IO () -- | Reexports Data.IORef.Compat from a globally unique namespace. module Data.IORef.Compat.Repl module Data.Monoid.Compat -- | The class of monoids (types with an associative binary operation that -- has an identity). Instances should satisfy the following: -- --
-- >>> "Hello world" <> mempty -- "Hello world" --mempty :: Monoid a => a -- | An associative operation -- -- NOTE: This method is redundant and has the default -- implementation mappend = (<>) since -- base-4.11.0.0. Should it be implemented manually, since -- mappend is a synonym for (<>), it is expected that -- the two functions are defined the same way. In a future GHC release -- mappend will be removed from Monoid. mappend :: Monoid a => a -> a -> a -- | Fold a list using the monoid. -- -- For most types, the default definition for mconcat will be -- used, but the function is included in the class definition so that an -- optimized version can be provided for specific types. -- --
-- >>> mconcat ["Hello", " ", "Haskell", "!"] -- "Hello Haskell!" --mconcat :: Monoid a => [a] -> a -- | Maybe monoid returning the rightmost non-Nothing value. -- -- Last a is isomorphic to Dual (First -- a), and thus to Dual (Alt Maybe a) -- --
-- >>> getLast (Last (Just "hello") <> Last Nothing <> Last (Just "world")) -- Just "world" --newtype Last a Last :: Maybe a -> Last a [getLast] :: Last a -> Maybe a -- | Maybe monoid returning the leftmost non-Nothing value. -- -- First a is isomorphic to Alt Maybe -- a, but precedes it historically. -- --
-- >>> getFirst (First (Just "hello") <> First Nothing <> First (Just "world")) -- Just "hello" --newtype First a First :: Maybe a -> First a [getFirst] :: First a -> Maybe a -- | This data type witnesses the lifting of a Monoid into an -- Applicative pointwise. newtype Ap (f :: k -> Type) (a :: k) Ap :: f a -> Ap (f :: k -> Type) (a :: k) [getAp] :: Ap (f :: k -> Type) (a :: k) -> f a -- | Monoid under addition. -- --
-- >>> getSum (Sum 1 <> Sum 2 <> mempty) -- 3 --newtype Sum a Sum :: a -> Sum a [getSum] :: Sum a -> a -- | Monoid under multiplication. -- --
-- >>> getProduct (Product 3 <> Product 4 <> mempty) -- 12 --newtype Product a Product :: a -> Product a [getProduct] :: Product a -> a -- | The monoid of endomorphisms under composition. -- --
-- >>> let computation = Endo ("Hello, " ++) <> Endo (++ "!")
--
-- >>> appEndo computation "Haskell"
-- "Hello, Haskell!"
--
newtype Endo a
Endo :: (a -> a) -> Endo a
[appEndo] :: Endo a -> a -> a
-- | The dual of a Monoid, obtained by swapping the arguments of
-- mappend.
--
-- -- >>> getDual (mappend (Dual "Hello") (Dual "World")) -- "WorldHello" --newtype Dual a Dual :: a -> Dual a [getDual] :: Dual a -> a -- | Boolean monoid under disjunction (||). -- --
-- >>> getAny (Any True <> mempty <> Any False) -- True ---- --
-- >>> getAny (mconcat (map (\x -> Any (even x)) [2,4,6,7,8])) -- True --newtype Any Any :: Bool -> Any [getAny] :: Any -> Bool -- | Monoid under <|>. -- --
-- >>> getAlt (Alt (Just 12) <> Alt (Just 24)) -- Just 12 ---- --
-- >>> getAlt $ Alt Nothing <> Alt (Just 24) -- Just 24 --newtype Alt (f :: k -> Type) (a :: k) Alt :: f a -> Alt (f :: k -> Type) (a :: k) [getAlt] :: Alt (f :: k -> Type) (a :: k) -> f a -- | Boolean monoid under conjunction (&&). -- --
-- >>> getAll (All True <> mempty <> All False) -- False ---- --
-- >>> getAll (mconcat (map (\x -> All (even x)) [2,4,6,7,8])) -- False --newtype All All :: Bool -> All [getAll] :: All -> Bool -- | An associative operation. -- --
-- >>> [1,2,3] <> [4,5,6] -- [1,2,3,4,5,6] --(<>) :: Semigroup a => a -> a -> a infixr 6 <> -- | Reexports Data.Monoid.Compat from a globally unique namespace. module Data.Monoid.Compat.Repl module Data.Proxy.Compat -- | asProxyTypeOf is a type-restricted version of const. It -- is usually used as an infix operator, and its typing forces its first -- argument (which is usually overloaded) to have the same type as the -- tag of the second. -- --
-- >>> import Data.Word -- -- >>> :type asProxyTypeOf 123 (Proxy :: Proxy Word8) -- asProxyTypeOf 123 (Proxy :: Proxy Word8) :: Word8 ---- -- Note the lower-case proxy in the definition. This allows any -- type constructor with just one argument to be passed to the function, -- for example we could also write -- --
-- >>> import Data.Word -- -- >>> :type asProxyTypeOf 123 (Just (undefined :: Word8)) -- asProxyTypeOf 123 (Just (undefined :: Word8)) :: Word8 --asProxyTypeOf :: a -> proxy a -> a -- | Reexports Data.Proxy.Compat from a globally unique namespace. module Data.Proxy.Compat.Repl module Data.Ratio.Compat -- | Reexports Data.Ratio.Compat from a globally unique namespace. module Data.Ratio.Compat.Repl module Data.STRef.Compat -- | Strict version of modifySTRef modifySTRef' :: STRef s a -> (a -> a) -> ST s () -- | Reexports Data.STRef.Compat from a globally unique namespace. module Data.STRef.Compat.Repl -- | This backports the modern Data.Semigroup interface back to -- base-4.9/GHC 8.0. module Data.Semigroup.Compat -- | The class of semigroups (types with an associative binary operation). -- -- Instances should satisfy the following: -- -- class Semigroup a -- | An associative operation. -- --
-- >>> [1,2,3] <> [4,5,6] -- [1,2,3,4,5,6] --(<>) :: Semigroup a => a -> a -> a -- | Reduce a non-empty list with <> -- -- The default definition should be sufficient, but this can be -- overridden for efficiency. -- --
-- >>> import Data.List.NonEmpty (NonEmpty (..)) -- -- >>> sconcat $ "Hello" :| [" ", "Haskell", "!"] -- "Hello Haskell!" --sconcat :: Semigroup a => NonEmpty a -> a -- | Repeat a value n times. -- -- Given that this works on a Semigroup it is allowed to fail if -- you request 0 or fewer repetitions, and the default definition will do -- so. -- -- By making this a member of the class, idempotent semigroups and -- monoids can upgrade this to execute in <math> by picking -- stimes = stimesIdempotent or stimes = -- stimesIdempotentMonoid respectively. -- --
-- >>> stimes 4 [1] -- [1,1,1,1] --stimes :: (Semigroup a, Integral b) => b -> a -> a infixr 6 <> -- | This is a valid definition of stimes for a Monoid. -- -- Unlike the default definition of stimes, it is defined for 0 -- and so it should be preferred where possible. stimesMonoid :: (Integral b, Monoid a) => b -> a -> a -- | This is a valid definition of stimes for an idempotent -- Semigroup. -- -- When x <> x = x, this definition should be preferred, -- because it works in <math> rather than <math>. stimesIdempotent :: Integral b => b -> a -> a -- | This is a valid definition of stimes for an idempotent -- Monoid. -- -- When mappend x x = x, this definition should be preferred, -- because it works in <math> rather than <math> stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a -- | Repeat a value n times. -- --
-- mtimesDefault n a = a <> a <> ... <> a -- using <> (n-1) times ---- -- Implemented using stimes and mempty. -- -- This is a suitable definition for an mtimes member of -- Monoid. mtimesDefault :: (Integral b, Monoid a) => b -> a -> a newtype Min a Min :: a -> Min a [getMin] :: Min a -> a newtype Max a Max :: a -> Max a [getMax] :: Max a -> a newtype First a First :: a -> First a [getFirst] :: First a -> a newtype Last a Last :: a -> Last a [getLast] :: Last a -> a -- | Provide a Semigroup for an arbitrary Monoid. -- -- NOTE: This is not needed anymore since Semigroup became -- a superclass of Monoid in base-4.11 and this newtype be -- deprecated at some point in the future. newtype WrappedMonoid m WrapMonoid :: m -> WrappedMonoid m [unwrapMonoid] :: WrappedMonoid m -> m -- | The dual of a Monoid, obtained by swapping the arguments of -- mappend. -- --
-- >>> getDual (mappend (Dual "Hello") (Dual "World")) -- "WorldHello" --newtype Dual a Dual :: a -> Dual a [getDual] :: Dual a -> a -- | The monoid of endomorphisms under composition. -- --
-- >>> let computation = Endo ("Hello, " ++) <> Endo (++ "!")
--
-- >>> appEndo computation "Haskell"
-- "Hello, Haskell!"
--
newtype Endo a
Endo :: (a -> a) -> Endo a
[appEndo] :: Endo a -> a -> a
-- | Boolean monoid under conjunction (&&).
--
-- -- >>> getAll (All True <> mempty <> All False) -- False ---- --
-- >>> getAll (mconcat (map (\x -> All (even x)) [2,4,6,7,8])) -- False --newtype All All :: Bool -> All [getAll] :: All -> Bool -- | Boolean monoid under disjunction (||). -- --
-- >>> getAny (Any True <> mempty <> Any False) -- True ---- --
-- >>> getAny (mconcat (map (\x -> Any (even x)) [2,4,6,7,8])) -- True --newtype Any Any :: Bool -> Any [getAny] :: Any -> Bool -- | Monoid under addition. -- --
-- >>> getSum (Sum 1 <> Sum 2 <> mempty) -- 3 --newtype Sum a Sum :: a -> Sum a [getSum] :: Sum a -> a -- | Monoid under multiplication. -- --
-- >>> getProduct (Product 3 <> Product 4 <> mempty) -- 12 --newtype Product a Product :: a -> Product a [getProduct] :: Product a -> a -- | This lets you use a difference list of a Semigroup as a -- Monoid. -- --
-- >>> let hello = diff "Hello, " -- -- >>> appEndo hello "World!" -- "Hello, World!" -- -- >>> appEndo (hello <> mempty) "World!" -- "Hello, World!" -- -- >>> appEndo (mempty <> hello) "World!" -- "Hello, World!" -- -- >>> let world = diff "World" -- -- >>> let excl = diff "!" -- -- >>> appEndo (hello <> (world <> excl)) mempty -- "Hello, World!" -- -- >>> appEndo ((hello <> world) <> excl) mempty -- "Hello, World!" --diff :: Semigroup m => m -> Endo m -- | A generalization of cycle to an arbitrary Semigroup. May -- fail to terminate for some values in some semigroups. cycle1 :: Semigroup m => m -> m -- | Arg isn't itself a Semigroup in its own right, but it -- can be placed inside Min and Max to compute an arg min -- or arg max. -- --
-- >>> minimum [ Arg (x * x) x | x <- [-10 .. 10] ] -- Arg 0 0 --data Arg a b Arg :: a -> b -> Arg a b -- |
-- >>> Min (Arg 0 ()) <> Min (Arg 1 ())
-- Min {getMin = Arg 0 ()}
--
type ArgMin a b = Min Arg a b
-- |
-- >>> Max (Arg 0 ()) <> Max (Arg 1 ())
-- Max {getMax = Arg 1 ()}
--
type ArgMax a b = Max Arg a b
-- | Reexports Data.Semigroup.Compat from a globally unique
-- namespace.
module Data.Semigroup.Compat.Repl
module Data.String.Compat
-- | A String is a list of characters. String constants in Haskell
-- are values of type String.
--
-- See Data.List for operations on lists.
type String = [Char]
-- | lines breaks a string up into a list of strings at newline
-- characters. The resulting strings do not contain newlines.
--
-- Note that after splitting the string at newline characters, the last
-- part of the string is considered a line even if it doesn't end with a
-- newline. For example,
--
-- -- >>> lines "" -- [] ---- --
-- >>> lines "\n" -- [""] ---- --
-- >>> lines "one" -- ["one"] ---- --
-- >>> lines "one\n" -- ["one"] ---- --
-- >>> lines "one\n\n" -- ["one",""] ---- --
-- >>> lines "one\ntwo" -- ["one","two"] ---- --
-- >>> lines "one\ntwo\n" -- ["one","two"] ---- -- Thus lines s contains at least as many elements as -- newlines in s. lines :: String -> [String] -- | words breaks a string up into a list of words, which were -- delimited by white space. -- --
-- >>> words "Lorem ipsum\ndolor" -- ["Lorem","ipsum","dolor"] --words :: String -> [String] -- | unlines is an inverse operation to lines. It joins -- lines, after appending a terminating newline to each. -- --
-- >>> unlines ["Hello", "World", "!"] -- "Hello\nWorld\n!\n" --unlines :: [String] -> String -- | unwords is an inverse operation to words. It joins words -- with separating spaces. -- --
-- >>> unwords ["Lorem", "ipsum", "dolor"] -- "Lorem ipsum dolor" --unwords :: [String] -> String -- | Reexports Data.String.Compat from a globally unique namespace. module Data.String.Compat.Repl -- | Note that we only re-export MkSolo when building with -- ghc-prim-0.10.0 (bundled with GHC 9.6) or later. If you want -- to backport MkSolo to older versions of GHC, import -- Data.Tuple.Compat from base-compat-batteries -- instead. module Data.Tuple.Compat -- | Extract the first component of a pair. fst :: (a, b) -> a -- | Extract the second component of a pair. snd :: (a, b) -> b -- | curry converts an uncurried function to a curried function. -- --
-- >>> curry fst 1 2 -- 1 --curry :: ((a, b) -> c) -> a -> b -> c -- | uncurry converts a curried function to a function on pairs. -- --
-- >>> uncurry (+) (1,2) -- 3 ---- --
-- >>> uncurry ($) (show, 1) -- "1" ---- --
-- >>> map (uncurry max) [(1,2), (3,4), (6,8)] -- [2,4,8] --uncurry :: (a -> b -> c) -> (a, b) -> c -- | Swap the components of a pair. swap :: (a, b) -> (b, a) -- | Solo is the canonical lifted 1-tuple, just like (,) -- is the canonical lifted 2-tuple (pair) and (,,) is the -- canonical lifted 3-tuple (triple). -- -- The most important feature of Solo is that it is possible to -- force its "outside" (usually by pattern matching) without forcing its -- "inside", because it is defined as a datatype rather than a newtype. -- One situation where this can be useful is when writing a function to -- extract a value from a data structure. Suppose you write an -- implementation of arrays and offer only this function to index into -- them: -- --
-- index :: Array a -> Int -> a ---- -- Now imagine that someone wants to extract a value from an array and -- store it in a lazy-valued finite map/dictionary: -- --
-- insert "hello" (arr index 12) m ---- -- This can actually lead to a space leak. The value is not actually -- extracted from the array until that value (now buried in a map) is -- forced. That means the entire array may be kept live by just that -- value! Often, the solution is to use a strict map, or to force the -- value before storing it, but for some purposes that's undesirable. -- -- One common solution is to include an indexing function that can -- produce its result in an arbitrary Applicative context: -- --
-- indexA :: Applicative f => Array a -> Int -> f a ---- -- When using indexA in a pure context, Solo -- serves as a handy Applicative functor to hold the result. You -- could write a non-leaky version of the above example thus: -- --
-- case arr indexA 12 of -- Solo a -> insert "hello" a m ---- -- While such simple extraction functions are the most common uses for -- unary tuples, they can also be useful for fine-grained control of -- strict-spined data structure traversals, and for unifying the -- implementations of lazy and strict mapping functions. data Solo a Solo :: a -> Solo a getSolo :: Solo a -> a -- | Reexports Data.Tuple.Compat from a globally unique namespace. module Data.Tuple.Compat.Repl module Data.Type.Coercion.Compat -- | Generalized form of type-safe cast using representational equality gcoerceWith :: forall {k} (a :: k) (b :: k) r. Coercion a b -> (Coercible a b => r) -> r -- | Reexports Data.Type.Coercion.Compat from a globally unique -- namespace. module Data.Type.Coercion.Compat.Repl module Data.Type.Equality.Compat -- | Reexports Data.Type.Equality.Compat from a globally unique -- namespace. module Data.Type.Equality.Compat.Repl module Data.Version.Compat -- | Construct tag-less Version makeVersion :: [Int] -> Version -- | Reexports Data.Version.Compat from a globally unique namespace. module Data.Version.Compat.Repl module Data.Void.Compat -- | Reexports Data.Void.Compat from a globally unique namespace. module Data.Void.Compat.Repl module Data.Word.Compat -- | Reverse order of bytes in Word16. byteSwap16 :: Word16 -> Word16 -- | Reverse order of bytes in Word32. byteSwap32 :: Word32 -> Word32 -- | Reverse order of bytes in Word64. byteSwap64 :: Word64 -> Word64 -- | Reexports Data.Word.Compat from a globally unique namespace. module Data.Word.Compat.Repl module Foreign.ForeignPtr.Compat -- | Advances the given address by the given offset in bytes. -- -- The new ForeignPtr shares the finalizer of the original, -- equivalent from a finalization standpoint to just creating another -- reference to the original. That is, the finalizer will not be called -- before the new ForeignPtr is unreachable, nor will it be called -- an additional time due to this call, and the finalizer will be called -- with the same address that it would have had this call not happened, -- *not* the new address. plusForeignPtr :: ForeignPtr a -> Int -> ForeignPtr b -- | Reexports Foreign.ForeignPtr.Compat from a globally unique -- namespace. module Foreign.ForeignPtr.Compat.Repl module Foreign.ForeignPtr.Safe.Compat -- | The type ForeignPtr represents references to objects that are -- maintained in a foreign language, i.e., that are not part of the data -- structures usually managed by the Haskell storage manager. The -- essential difference between ForeignPtrs and vanilla memory -- references of type Ptr a is that the former may be associated -- with finalizers. A finalizer is a routine that is invoked when -- the Haskell storage manager detects that - within the Haskell heap and -- stack - there are no more references left that are pointing to the -- ForeignPtr. Typically, the finalizer will, then, invoke -- routines in the foreign language that free the resources bound by the -- foreign object. -- -- The ForeignPtr is parameterised in the same way as Ptr. -- The type argument of ForeignPtr should normally be an instance -- of class Storable. data ForeignPtr a -- | A finalizer is represented as a pointer to a foreign function that, at -- finalisation time, gets as an argument a plain pointer variant of the -- foreign pointer that the finalizer is associated with. -- -- Note that the foreign function must use the ccall -- calling convention. type FinalizerPtr a = FunPtr Ptr a -> IO () type FinalizerEnvPtr env a = FunPtr Ptr env -> Ptr a -> IO () -- | Turns a plain memory reference into a foreign pointer, and associates -- a finalizer with the reference. The finalizer will be executed after -- the last reference to the foreign object is dropped. There is no -- guarantee of promptness, however the finalizer will be executed before -- the program exits. newForeignPtr :: FinalizerPtr a -> Ptr a -> IO (ForeignPtr a) -- | Turns a plain memory reference into a foreign pointer that may be -- associated with finalizers by using addForeignPtrFinalizer. newForeignPtr_ :: Ptr a -> IO (ForeignPtr a) -- | This function adds a finalizer to the given foreign object. The -- finalizer will run before all other finalizers for the same -- object which have already been registered. addForeignPtrFinalizer :: FinalizerPtr a -> ForeignPtr a -> IO () -- | This variant of newForeignPtr adds a finalizer that expects an -- environment in addition to the finalized pointer. The environment that -- will be passed to the finalizer is fixed by the second argument to -- newForeignPtrEnv. newForeignPtrEnv :: FinalizerEnvPtr env a -> Ptr env -> Ptr a -> IO (ForeignPtr a) -- | Like addForeignPtrFinalizer but the finalizer is passed an -- additional environment parameter. addForeignPtrFinalizerEnv :: FinalizerEnvPtr env a -> Ptr env -> ForeignPtr a -> IO () -- | This is a way to look at the pointer living inside a foreign object. -- This function takes a function which is applied to that pointer. The -- resulting IO action is then executed. The foreign object is -- kept alive at least during the whole action, even if it is not used -- directly inside. Note that it is not safe to return the pointer from -- the action and use it after the action completes. All uses of the -- pointer should be inside the withForeignPtr bracket. The reason -- for this unsafeness is the same as for unsafeForeignPtrToPtr -- below: the finalizer may run earlier than expected, because the -- compiler can only track usage of the ForeignPtr object, not a -- Ptr object made from it. -- -- This function is normally used for marshalling data to or from the -- object pointed to by the ForeignPtr, using the operations from -- the Storable class. withForeignPtr :: ForeignPtr a -> (Ptr a -> IO b) -> IO b -- | Causes the finalizers associated with a foreign pointer to be run -- immediately. The foreign pointer must not be used again after this -- function is called. If the foreign pointer does not support -- finalizers, this is a no-op. finalizeForeignPtr :: ForeignPtr a -> IO () -- | This function ensures that the foreign object in question is alive at -- the given place in the sequence of IO actions. However, this comes -- with a significant caveat: the contract above does not hold if GHC can -- demonstrate that the code preceeding touchForeignPtr diverges -- (e.g. by looping infinitely or throwing an exception). For this -- reason, you are strongly advised to use instead withForeignPtr -- where possible. -- -- Also, note that this function should not be used to express -- dependencies between finalizers on ForeignPtrs. For example, if -- the finalizer for a ForeignPtr F1 calls -- touchForeignPtr on a second ForeignPtr F2, then -- the only guarantee is that the finalizer for F2 is never -- started before the finalizer for F1. They might be started -- together if for example both F1 and F2 are otherwise -- unreachable, and in that case the scheduler might end up running the -- finalizer for F2 first. -- -- In general, it is not recommended to use finalizers on separate -- objects with ordering constraints between them. To express the -- ordering robustly requires explicit synchronisation using -- MVars between the finalizers, but even then the runtime -- sometimes runs multiple finalizers sequentially in a single thread -- (for performance reasons), so synchronisation between finalizers could -- result in artificial deadlock. Another alternative is to use explicit -- reference counting. touchForeignPtr :: ForeignPtr a -> IO () -- | This function casts a ForeignPtr parameterised by one type into -- another type. castForeignPtr :: ForeignPtr a -> ForeignPtr b -- | Allocate some memory and return a ForeignPtr to it. The memory -- will be released automatically when the ForeignPtr is -- discarded. -- -- mallocForeignPtr is equivalent to -- --
-- do { p <- malloc; newForeignPtr finalizerFree p }
--
--
-- although it may be implemented differently internally: you may not
-- assume that the memory returned by mallocForeignPtr has been
-- allocated with malloc.
--
-- GHC notes: mallocForeignPtr has a heavily optimised
-- implementation in GHC. It uses pinned memory in the garbage collected
-- heap, so the ForeignPtr does not require a finalizer to free
-- the memory. Use of mallocForeignPtr and associated functions is
-- strongly recommended in preference to newForeignPtr with a
-- finalizer.
mallocForeignPtr :: Storable a => IO (ForeignPtr a)
-- | This function is similar to mallocForeignPtr, except that the
-- size of the memory required is given explicitly as a number of bytes.
mallocForeignPtrBytes :: Int -> IO (ForeignPtr a)
-- | This function is similar to mallocArray, but yields a memory
-- area that has a finalizer attached that releases the memory area. As
-- with mallocForeignPtr, it is not guaranteed that the block of
-- memory was allocated by malloc.
mallocForeignPtrArray :: Storable a => Int -> IO (ForeignPtr a)
-- | This function is similar to mallocArray0, but yields a memory
-- area that has a finalizer attached that releases the memory area. As
-- with mallocForeignPtr, it is not guaranteed that the block of
-- memory was allocated by malloc.
mallocForeignPtrArray0 :: Storable a => Int -> IO (ForeignPtr a)
-- | Reexports Foreign.ForeignPtr.Safe.Compat from a globally unique
-- namespace.
module Foreign.ForeignPtr.Safe.Compat.Repl
module Foreign.ForeignPtr.Unsafe.Compat
-- | This function extracts the pointer component of a foreign pointer.
-- This is a potentially dangerous operations, as if the argument to
-- unsafeForeignPtrToPtr is the last usage occurrence of the given
-- foreign pointer, then its finalizer(s) will be run, which potentially
-- invalidates the plain pointer just obtained. Hence,
-- touchForeignPtr must be used wherever it has to be guaranteed
-- that the pointer lives on - i.e., has another usage occurrence.
--
-- To avoid subtle coding errors, hand written marshalling code should
-- preferably use withForeignPtr rather than combinations of
-- unsafeForeignPtrToPtr and touchForeignPtr. However, the
-- latter routines are occasionally preferred in tool generated
-- marshalling code.
unsafeForeignPtrToPtr :: ForeignPtr a -> Ptr a
-- | Reexports Foreign.ForeignPtr.Unsafe.Compat from a globally
-- unique namespace.
module Foreign.ForeignPtr.Unsafe.Compat.Repl
module Foreign.Marshal.Alloc.Compat
-- | Like malloc but memory is filled with bytes of value zero.
calloc :: Storable a => IO (Ptr a)
-- | Like mallocBytes, but memory is filled with bytes of value
-- zero.
callocBytes :: Int -> IO (Ptr a)
-- | Reexports Foreign.Marshal.Alloc.Compat from a globally unique
-- namespace.
module Foreign.Marshal.Alloc.Compat.Repl
module Foreign.Marshal.Array.Compat
-- | Like mallocArray, but allocated memory is filled with bytes of
-- value zero.
callocArray :: Storable a => Int -> IO (Ptr a)
-- | Like callocArray0, but allocated memory is filled with bytes of
-- value zero.
callocArray0 :: Storable a => Int -> IO (Ptr a)
-- | Reexports Foreign.Marshal.Array.Compat from a globally unique
-- namespace.
module Foreign.Marshal.Array.Compat.Repl
module Foreign.Marshal.Safe.Compat
-- | Reexports Foreign.Marshal.Safe.Compat from a globally unique
-- namespace.
module Foreign.Marshal.Safe.Compat.Repl
module Foreign.Marshal.Unsafe.Compat
-- | Sometimes an external entity is a pure function, except that it passes
-- arguments and/or results via pointers. The function
-- unsafeLocalState permits the packaging of such entities as
-- pure functions.
--
-- The only IO operations allowed in the IO action passed to
-- unsafeLocalState are (a) local allocation (alloca,
-- allocaBytes and derived operations such as withArray
-- and withCString), and (b) pointer operations
-- (Foreign.Storable and Foreign.Ptr) on the pointers
-- to local storage, and (c) foreign functions whose only observable
-- effect is to read and/or write the locally allocated memory. Passing
-- an IO operation that does not obey these rules results in undefined
-- behaviour.
--
-- It is expected that this operation will be replaced in a future
-- revision of Haskell.
unsafeLocalState :: IO a -> a
-- | Reexports Foreign.Marshal.Unsafe.Compat from a globally unique
-- namespace.
module Foreign.Marshal.Unsafe.Compat.Repl
module Foreign.Marshal.Utils.Compat
-- | Fill a given number of bytes in memory area with a byte value.
fillBytes :: Ptr a -> Word8 -> Int -> IO ()
module Foreign.Marshal.Compat
-- | Reexports Foreign.Marshal.Compat from a globally unique
-- namespace.
module Foreign.Marshal.Compat.Repl
module Foreign.Compat
-- | Reexports Foreign.Compat from a globally unique namespace.
module Foreign.Compat.Repl
-- | Reexports Foreign.Marshal.Utils.Compat from a globally unique
-- namespace.
module Foreign.Marshal.Utils.Compat.Repl
module Numeric.Compat
-- | Show non-negative Integral numbers in base 2.
showBin :: (Integral a, Show a) => a -> ShowS
-- | Show a signed RealFloat value using standard decimal notation
-- (e.g. 245000, 0.0015).
--
-- This behaves as showFFloat, except that a decimal point is
-- always guaranteed, even if not needed.
showFFloatAlt :: RealFloat a => Maybe Int -> a -> ShowS
-- | Show a signed RealFloat value using standard decimal notation
-- for arguments whose absolute value lies between 0.1 and
-- 9,999,999, and scientific notation otherwise.
--
-- This behaves as showFFloat, except that a decimal point is
-- always guaranteed, even if not needed.
showGFloatAlt :: RealFloat a => Maybe Int -> a -> ShowS
-- | Show a floating-point value in the hexadecimal format, similar to the
-- %a specifier in C's printf.
--
-- -- >>> showHFloat (212.21 :: Double) "" -- "0x1.a86b851eb851fp7" -- -- >>> showHFloat (-12.76 :: Float) "" -- "-0x1.9851ecp3" -- -- >>> showHFloat (-0 :: Double) "" -- "-0x0p+0" --showHFloat :: RealFloat a => a -> ShowS -- | Read an unsigned number in binary notation. -- --
-- >>> readBin "10011" -- [(19,"")] --readBin :: (Eq a, Num a) => ReadS a -- | Reexports Numeric.Compat from a globally unique namespace. module Numeric.Compat.Repl module Numeric.Natural.Compat -- | Natural subtraction. Returns Nothings for non-positive -- results. minusNaturalMaybe :: Natural -> Natural -> Maybe Natural -- | Reexports Numeric.Natural.Compat from a globally unique -- namespace. module Numeric.Natural.Compat.Repl module Prelude.Compat -- | Case analysis for the Either type. If the value is -- Left a, apply the first function to a; if it -- is Right b, apply the second function to b. -- --
-- >>> let s = Left "foo" :: Either String Int -- -- >>> let n = Right 3 :: Either String Int -- -- >>> either length (*2) s -- 3 -- -- >>> either length (*2) n -- 6 --either :: (a -> c) -> (b -> c) -> Either a b -> c -- | Determines whether all elements of the structure satisfy the -- predicate. -- --
-- >>> all (> 3) [] -- True ---- --
-- >>> all (> 3) [1,2] -- False ---- --
-- >>> all (> 3) [1,2,3,4,5] -- False ---- --
-- >>> all (> 3) [1..] -- False ---- --
-- >>> all (> 3) [4..] -- * Hangs forever * --all :: Foldable t => (a -> Bool) -> t a -> Bool -- | and returns the conjunction of a container of Bools. For the -- result to be True, the container must be finite; False, -- however, results from a False value finitely far from the left -- end. -- --
-- >>> and [] -- True ---- --
-- >>> and [True] -- True ---- --
-- >>> and [False] -- False ---- --
-- >>> and [True, True, False] -- False ---- --
-- >>> and (False : repeat True) -- Infinite list [False,True,True,True,... -- False ---- --
-- >>> and (repeat True) -- * Hangs forever * --and :: Foldable t => t Bool -> Bool -- | Determines whether any element of the structure satisfies the -- predicate. -- --
-- >>> any (> 3) [] -- False ---- --
-- >>> any (> 3) [1,2] -- False ---- --
-- >>> any (> 3) [1,2,3,4,5] -- True ---- --
-- >>> any (> 3) [1..] -- True ---- --
-- >>> any (> 3) [0, -1..] -- * Hangs forever * --any :: Foldable t => (a -> Bool) -> t a -> Bool -- | The concatenation of all the elements of a container of lists. -- --
-- >>> concat (Just [1, 2, 3]) -- [1,2,3] ---- --
-- >>> concat (Left 42) -- [] ---- --
-- >>> concat [[1, 2, 3], [4, 5], [6], []] -- [1,2,3,4,5,6] --concat :: Foldable t => t [a] -> [a] -- | Map a function over all the elements of a container and concatenate -- the resulting lists. -- --
-- >>> concatMap (take 3) [[1..], [10..], [100..], [1000..]] -- [1,2,3,10,11,12,100,101,102,1000,1001,1002] ---- --
-- >>> concatMap (take 3) (Just [1..]) -- [1,2,3] --concatMap :: Foldable t => (a -> [b]) -> t a -> [b] -- | Map each element of a structure to a monadic action, evaluate these -- actions from left to right, and ignore the results. For a version that -- doesn't ignore the results see mapM. -- -- mapM_ is just like traverse_, but specialised to monadic -- actions. mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m () -- | notElem is the negation of elem. -- --
-- >>> 3 `notElem` [] -- True ---- --
-- >>> 3 `notElem` [1,2] -- True ---- --
-- >>> 3 `notElem` [1,2,3,4,5] -- False ---- -- For infinite structures, notElem terminates if the value exists -- at a finite distance from the left side of the structure: -- --
-- >>> 3 `notElem` [1..] -- False ---- --
-- >>> 3 `notElem` ([4..] ++ [3]) -- * Hangs forever * --notElem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 `notElem` -- | or returns the disjunction of a container of Bools. For the -- result to be False, the container must be finite; True, -- however, results from a True value finitely far from the left -- end. -- --
-- >>> or [] -- False ---- --
-- >>> or [True] -- True ---- --
-- >>> or [False] -- False ---- --
-- >>> or [True, True, False] -- True ---- --
-- >>> or (True : repeat False) -- Infinite list [True,False,False,False,... -- True ---- --
-- >>> or (repeat False) -- * Hangs forever * --or :: Foldable t => t Bool -> Bool -- | Evaluate each monadic action in the structure from left to right, and -- ignore the results. For a version that doesn't ignore the results see -- sequence. -- -- sequence_ is just like sequenceA_, but specialised to -- monadic actions. sequence_ :: (Foldable t, Monad m) => t (m a) -> m () -- | An infix synonym for fmap. -- -- The name of this operator is an allusion to $. Note the -- similarities between their types: -- --
-- ($) :: (a -> b) -> a -> b -- (<$>) :: Functor f => (a -> b) -> f a -> f b ---- -- Whereas $ is function application, <$> is function -- application lifted over a Functor. -- --
-- >>> show <$> Nothing -- Nothing -- -- >>> show <$> Just 3 -- Just "3" ---- -- Convert from an Either Int Int to an -- Either Int String using show: -- --
-- >>> show <$> Left 17 -- Left 17 -- -- >>> show <$> Right 17 -- Right "17" ---- -- Double each element of a list: -- --
-- >>> (*2) <$> [1,2,3] -- [2,4,6] ---- -- Apply even to the second element of a pair: -- --
-- >>> even <$> (2,2) -- (2,True) --(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 <$> -- | The maybe function takes a default value, a function, and a -- Maybe value. If the Maybe value is Nothing, the -- function returns the default value. Otherwise, it applies the function -- to the value inside the Just and returns the result. -- --
-- >>> maybe False odd (Just 3) -- True ---- --
-- >>> maybe False odd Nothing -- False ---- -- Read an integer from a string using readMaybe. If we succeed, -- return twice the integer; that is, apply (*2) to it. If -- instead we fail to parse an integer, return 0 by default: -- --
-- >>> import Text.Read ( readMaybe ) -- -- >>> maybe 0 (*2) (readMaybe "5") -- 10 -- -- >>> maybe 0 (*2) (readMaybe "") -- 0 ---- -- Apply show to a Maybe Int. If we have Just n, -- we want to show the underlying Int n. But if we have -- Nothing, we return the empty string instead of (for example) -- "Nothing": -- --
-- >>> maybe "" show (Just 5) -- "5" -- -- >>> maybe "" show Nothing -- "" --maybe :: b -> (a -> b) -> Maybe a -> b -- | lines breaks a string up into a list of strings at newline -- characters. The resulting strings do not contain newlines. -- -- Note that after splitting the string at newline characters, the last -- part of the string is considered a line even if it doesn't end with a -- newline. For example, -- --
-- >>> lines "" -- [] ---- --
-- >>> lines "\n" -- [""] ---- --
-- >>> lines "one" -- ["one"] ---- --
-- >>> lines "one\n" -- ["one"] ---- --
-- >>> lines "one\n\n" -- ["one",""] ---- --
-- >>> lines "one\ntwo" -- ["one","two"] ---- --
-- >>> lines "one\ntwo\n" -- ["one","two"] ---- -- Thus lines s contains at least as many elements as -- newlines in s. lines :: String -> [String] -- | unlines is an inverse operation to lines. It joins -- lines, after appending a terminating newline to each. -- --
-- >>> unlines ["Hello", "World", "!"] -- "Hello\nWorld\n!\n" --unlines :: [String] -> String -- | unwords is an inverse operation to words. It joins words -- with separating spaces. -- --
-- >>> unwords ["Lorem", "ipsum", "dolor"] -- "Lorem ipsum dolor" --unwords :: [String] -> String -- | words breaks a string up into a list of words, which were -- delimited by white space. -- --
-- >>> words "Lorem ipsum\ndolor" -- ["Lorem","ipsum","dolor"] --words :: String -> [String] -- | curry converts an uncurried function to a curried function. -- --
-- >>> curry fst 1 2 -- 1 --curry :: ((a, b) -> c) -> a -> b -> c -- | Extract the first component of a pair. fst :: (a, b) -> a -- | Extract the second component of a pair. snd :: (a, b) -> b -- | uncurry converts a curried function to a function on pairs. -- --
-- >>> uncurry (+) (1,2) -- 3 ---- --
-- >>> uncurry ($) (show, 1) -- "1" ---- --
-- >>> map (uncurry max) [(1,2), (3,4), (6,8)] -- [2,4,8] --uncurry :: (a -> b -> c) -> (a, b) -> c -- | Strict (call-by-value) application operator. It takes a function and -- an argument, evaluates the argument to weak head normal form (WHNF), -- then calls the function with that value. ($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 $! -- | Append two lists, i.e., -- --
-- [x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] -- [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...] ---- -- If the first list is not finite, the result is the first list. (++) :: [a] -> [a] -> [a] infixr 5 ++ -- | Function composition. (.) :: (b -> c) -> (a -> b) -> a -> c infixr 9 . -- | Same as >>=, but with the arguments interchanged. (=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 =<< -- | asTypeOf is a type-restricted version of const. It is -- usually used as an infix operator, and its typing forces its first -- argument (which is usually overloaded) to have the same type as the -- second. asTypeOf :: a -> a -> a -- | const x is a unary function which evaluates to x for -- all inputs. -- --
-- >>> const 42 "hello" -- 42 ---- --
-- >>> map (const 42) [0..3] -- [42,42,42,42] --const :: a -> b -> a -- | flip f takes its (first) two arguments in the reverse -- order of f. -- --
-- >>> flip (++) "hello" "world" -- "worldhello" --flip :: (a -> b -> c) -> b -> a -> c -- | Identity function. -- --
-- id x = x --id :: a -> a -- | <math>. map f xs is the list obtained by -- applying f to each element of xs, i.e., -- --
-- map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] -- map f [x1, x2, ...] == [f x1, f x2, ...] ---- --
-- >>> map (+1) [1, 2, 3] -- [2,3,4] --map :: (a -> b) -> [a] -> [b] -- | otherwise is defined as the value True. It helps to make -- guards more readable. eg. -- --
-- f x | x < 0 = ... -- | otherwise = ... --otherwise :: Bool -- | until p f yields the result of applying f -- until p holds. until :: (a -> Bool) -> (a -> a) -> a -> a -- | Raise an IOException in the IO monad. ioError :: IOError -> IO a -- | Construct an IOException value with a string describing the -- error. The fail method of the IO instance of the -- Monad class raises a userError, thus: -- --
-- instance Monad IO where -- ... -- fail s = ioError (userError s) --userError :: String -> IOError -- | List index (subscript) operator, starting from 0. It is an instance of -- the more general genericIndex, which takes an index of any -- integral type. -- --
-- >>> ['a', 'b', 'c'] !! 0 -- 'a' -- -- >>> ['a', 'b', 'c'] !! 2 -- 'c' -- -- >>> ['a', 'b', 'c'] !! 3 -- *** Exception: Prelude.!!: index too large -- -- >>> ['a', 'b', 'c'] !! (-1) -- *** Exception: Prelude.!!: negative index --(!!) :: [a] -> Int -> a infixl 9 !! -- | break, applied to a predicate p and a list -- xs, returns a tuple where first element is longest prefix -- (possibly empty) of xs of elements that do not satisfy -- p and second element is the remainder of the list: -- --
-- >>> break (> 3) [1,2,3,4,1,2,3,4] -- ([1,2,3],[4,1,2,3,4]) -- -- >>> break (< 9) [1,2,3] -- ([],[1,2,3]) -- -- >>> break (> 9) [1,2,3] -- ([1,2,3],[]) ---- -- break p is equivalent to span (not . -- p). break :: (a -> Bool) -> [a] -> ([a], [a]) -- | cycle ties a finite list into a circular one, or equivalently, -- the infinite repetition of the original list. It is the identity on -- infinite lists. -- --
-- >>> cycle [] -- *** Exception: Prelude.cycle: empty list -- -- >>> take 20 $ cycle [42] -- [42,42,42,42,42,42,42,42,42,42... -- -- >>> take 20 $ cycle [2, 5, 7] -- [2,5,7,2,5,7,2,5,7,2,5,7... --cycle :: [a] -> [a] -- | drop n xs returns the suffix of xs after the -- first n elements, or [] if n >= length -- xs. -- --
-- >>> drop 6 "Hello World!" -- "World!" -- -- >>> drop 3 [1,2,3,4,5] -- [4,5] -- -- >>> drop 3 [1,2] -- [] -- -- >>> drop 3 [] -- [] -- -- >>> drop (-1) [1,2] -- [1,2] -- -- >>> drop 0 [1,2] -- [1,2] ---- -- It is an instance of the more general genericDrop, in which -- n may be of any integral type. drop :: Int -> [a] -> [a] -- | dropWhile p xs returns the suffix remaining after -- takeWhile p xs. -- --
-- >>> dropWhile (< 3) [1,2,3,4,5,1,2,3] -- [3,4,5,1,2,3] -- -- >>> dropWhile (< 9) [1,2,3] -- [] -- -- >>> dropWhile (< 0) [1,2,3] -- [1,2,3] --dropWhile :: (a -> Bool) -> [a] -> [a] -- | <math>. filter, applied to a predicate and a list, -- returns the list of those elements that satisfy the predicate; i.e., -- --
-- filter p xs = [ x | x <- xs, p x] ---- --
-- >>> filter odd [1, 2, 3] -- [1,3] --filter :: (a -> Bool) -> [a] -> [a] -- | <math>. Extract the first element of a list, which must be -- non-empty. -- --
-- >>> head [1, 2, 3] -- 1 -- -- >>> head [1..] -- 1 -- -- >>> head [] -- *** Exception: Prelude.head: empty list --head :: [a] -> a -- | <math>. Return all the elements of a list except the last one. -- The list must be non-empty. -- --
-- >>> init [1, 2, 3] -- [1,2] -- -- >>> init [1] -- [] -- -- >>> init [] -- *** Exception: Prelude.init: empty list --init :: [a] -> [a] -- | iterate f x returns an infinite list of repeated -- applications of f to x: -- --
-- iterate f x == [x, f x, f (f x), ...] ---- -- Note that iterate is lazy, potentially leading to thunk -- build-up if the consumer doesn't force each iterate. See -- iterate' for a strict variant of this function. -- --
-- >>> take 10 $ iterate not True -- [True,False,True,False... -- -- >>> take 10 $ iterate (+3) 42 -- [42,45,48,51,54,57,60,63... --iterate :: (a -> a) -> a -> [a] -- | <math>. Extract the last element of a list, which must be finite -- and non-empty. -- --
-- >>> last [1, 2, 3] -- 3 -- -- >>> last [1..] -- * Hangs forever * -- -- >>> last [] -- *** Exception: Prelude.last: empty list --last :: [a] -> a -- | <math>. lookup key assocs looks up a key in an -- association list. -- --
-- >>> lookup 2 [] -- Nothing -- -- >>> lookup 2 [(1, "first")] -- Nothing -- -- >>> lookup 2 [(1, "first"), (2, "second"), (3, "third")] -- Just "second" --lookup :: Eq a => a -> [(a, b)] -> Maybe b -- | repeat x is an infinite list, with x the -- value of every element. -- --
-- >>> take 20 $ repeat 17 -- [17,17,17,17,17,17,17,17,17... --repeat :: a -> [a] -- | replicate n x is a list of length n with -- x the value of every element. It is an instance of the more -- general genericReplicate, in which n may be of any -- integral type. -- --
-- >>> replicate 0 True -- [] -- -- >>> replicate (-1) True -- [] -- -- >>> replicate 4 True -- [True,True,True,True] --replicate :: Int -> a -> [a] -- | reverse xs returns the elements of xs in -- reverse order. xs must be finite. -- --
-- >>> reverse [] -- [] -- -- >>> reverse [42] -- [42] -- -- >>> reverse [2,5,7] -- [7,5,2] -- -- >>> reverse [1..] -- * Hangs forever * --reverse :: [a] -> [a] -- | <math>. scanl is similar to foldl, but returns a -- list of successive reduced values from the left: -- --
-- scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...] ---- -- Note that -- --
-- last (scanl f z xs) == foldl f z xs ---- --
-- >>> scanl (+) 0 [1..4] -- [0,1,3,6,10] -- -- >>> scanl (+) 42 [] -- [42] -- -- >>> scanl (-) 100 [1..4] -- [100,99,97,94,90] -- -- >>> scanl (\reversedString nextChar -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd'] -- ["foo","afoo","bafoo","cbafoo","dcbafoo"] -- -- >>> scanl (+) 0 [1..] -- * Hangs forever * --scanl :: (b -> a -> b) -> b -> [a] -> [b] -- | <math>. scanl1 is a variant of scanl that has no -- starting value argument: -- --
-- scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...] ---- --
-- >>> scanl1 (+) [1..4] -- [1,3,6,10] -- -- >>> scanl1 (+) [] -- [] -- -- >>> scanl1 (-) [1..4] -- [1,-1,-4,-8] -- -- >>> scanl1 (&&) [True, False, True, True] -- [True,False,False,False] -- -- >>> scanl1 (||) [False, False, True, True] -- [False,False,True,True] -- -- >>> scanl1 (+) [1..] -- * Hangs forever * --scanl1 :: (a -> a -> a) -> [a] -> [a] -- | <math>. scanr is the right-to-left dual of scanl. -- Note that the order of parameters on the accumulating function are -- reversed compared to scanl. Also note that -- --
-- head (scanr f z xs) == foldr f z xs. ---- --
-- >>> scanr (+) 0 [1..4] -- [10,9,7,4,0] -- -- >>> scanr (+) 42 [] -- [42] -- -- >>> scanr (-) 100 [1..4] -- [98,-97,99,-96,100] -- -- >>> scanr (\nextChar reversedString -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd'] -- ["abcdfoo","bcdfoo","cdfoo","dfoo","foo"] -- -- >>> force $ scanr (+) 0 [1..] -- *** Exception: stack overflow --scanr :: (a -> b -> b) -> b -> [a] -> [b] -- | <math>. scanr1 is a variant of scanr that has no -- starting value argument. -- --
-- >>> scanr1 (+) [1..4] -- [10,9,7,4] -- -- >>> scanr1 (+) [] -- [] -- -- >>> scanr1 (-) [1..4] -- [-2,3,-1,4] -- -- >>> scanr1 (&&) [True, False, True, True] -- [False,False,True,True] -- -- >>> scanr1 (||) [True, True, False, False] -- [True,True,False,False] -- -- >>> force $ scanr1 (+) [1..] -- *** Exception: stack overflow --scanr1 :: (a -> a -> a) -> [a] -> [a] -- | span, applied to a predicate p and a list xs, -- returns a tuple where first element is longest prefix (possibly empty) -- of xs of elements that satisfy p and second element -- is the remainder of the list: -- --
-- >>> span (< 3) [1,2,3,4,1,2,3,4] -- ([1,2],[3,4,1,2,3,4]) -- -- >>> span (< 9) [1,2,3] -- ([1,2,3],[]) -- -- >>> span (< 0) [1,2,3] -- ([],[1,2,3]) ---- -- span p xs is equivalent to (takeWhile p xs, -- dropWhile p xs) span :: (a -> Bool) -> [a] -> ([a], [a]) -- | splitAt n xs returns a tuple where first element is -- xs prefix of length n and second element is the -- remainder of the list: -- --
-- >>> splitAt 6 "Hello World!"
-- ("Hello ","World!")
--
-- >>> splitAt 3 [1,2,3,4,5]
-- ([1,2,3],[4,5])
--
-- >>> splitAt 1 [1,2,3]
-- ([1],[2,3])
--
-- >>> splitAt 3 [1,2,3]
-- ([1,2,3],[])
--
-- >>> splitAt 4 [1,2,3]
-- ([1,2,3],[])
--
-- >>> splitAt 0 [1,2,3]
-- ([],[1,2,3])
--
-- >>> splitAt (-1) [1,2,3]
-- ([],[1,2,3])
--
--
-- It is equivalent to (take n xs, drop n xs) when
-- n is not _|_ (splitAt _|_ xs = _|_).
-- splitAt is an instance of the more general
-- genericSplitAt, in which n may be of any integral
-- type.
splitAt :: Int -> [a] -> ([a], [a])
-- | <math>. Extract the elements after the head of a list, which
-- must be non-empty.
--
-- -- >>> tail [1, 2, 3] -- [2,3] -- -- >>> tail [1] -- [] -- -- >>> tail [] -- *** Exception: Prelude.tail: empty list --tail :: [a] -> [a] -- | take n, applied to a list xs, returns the -- prefix of xs of length n, or xs itself if -- n >= length xs. -- --
-- >>> take 5 "Hello World!" -- "Hello" -- -- >>> take 3 [1,2,3,4,5] -- [1,2,3] -- -- >>> take 3 [1,2] -- [1,2] -- -- >>> take 3 [] -- [] -- -- >>> take (-1) [1,2] -- [] -- -- >>> take 0 [1,2] -- [] ---- -- It is an instance of the more general genericTake, in which -- n may be of any integral type. take :: Int -> [a] -> [a] -- | takeWhile, applied to a predicate p and a list -- xs, returns the longest prefix (possibly empty) of -- xs of elements that satisfy p. -- --
-- >>> takeWhile (< 3) [1,2,3,4,1,2,3,4] -- [1,2] -- -- >>> takeWhile (< 9) [1,2,3] -- [1,2,3] -- -- >>> takeWhile (< 0) [1,2,3] -- [] --takeWhile :: (a -> Bool) -> [a] -> [a] -- | unzip transforms a list of pairs into a list of first -- components and a list of second components. -- --
-- >>> unzip [] -- ([],[]) -- -- >>> unzip [(1, 'a'), (2, 'b')] -- ([1,2],"ab") --unzip :: [(a, b)] -> ([a], [b]) -- | The unzip3 function takes a list of triples and returns three -- lists, analogous to unzip. -- --
-- >>> unzip3 [] -- ([],[],[]) -- -- >>> unzip3 [(1, 'a', True), (2, 'b', False)] -- ([1,2],"ab",[True,False]) --unzip3 :: [(a, b, c)] -> ([a], [b], [c]) -- | <math>. zip takes two lists and returns a list of -- corresponding pairs. -- --
-- >>> zip [1, 2] ['a', 'b'] -- [(1,'a'),(2,'b')] ---- -- If one input list is shorter than the other, excess elements of the -- longer list are discarded, even if one of the lists is infinite: -- --
-- >>> zip [1] ['a', 'b'] -- [(1,'a')] -- -- >>> zip [1, 2] ['a'] -- [(1,'a')] -- -- >>> zip [] [1..] -- [] -- -- >>> zip [1..] [] -- [] ---- -- zip is right-lazy: -- --
-- >>> zip [] undefined -- [] -- -- >>> zip undefined [] -- *** Exception: Prelude.undefined -- ... ---- -- zip is capable of list fusion, but it is restricted to its -- first list argument and its resulting list. zip :: [a] -> [b] -> [(a, b)] -- | zip3 takes three lists and returns a list of triples, analogous -- to zip. It is capable of list fusion, but it is restricted to -- its first list argument and its resulting list. zip3 :: [a] -> [b] -> [c] -> [(a, b, c)] -- | <math>. zipWith generalises zip by zipping with -- the function given as the first argument, instead of a tupling -- function. -- --
-- zipWith (,) xs ys == zip xs ys -- zipWith f [x1,x2,x3..] [y1,y2,y3..] == [f x1 y1, f x2 y2, f x3 y3..] ---- -- For example, zipWith (+) is applied to two lists to -- produce the list of corresponding sums: -- --
-- >>> zipWith (+) [1, 2, 3] [4, 5, 6] -- [5,7,9] ---- -- zipWith is right-lazy: -- --
-- >>> let f = undefined -- -- >>> zipWith f [] undefined -- [] ---- -- zipWith is capable of list fusion, but it is restricted to its -- first list argument and its resulting list. zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] -- | The zipWith3 function takes a function which combines three -- elements, as well as three lists and returns a list of the function -- applied to corresponding elements, analogous to zipWith. It is -- capable of list fusion, but it is restricted to its first list -- argument and its resulting list. -- --
-- zipWith3 (,,) xs ys zs == zip3 xs ys zs -- zipWith3 f [x1,x2,x3..] [y1,y2,y3..] [z1,z2,z3..] == [f x1 y1 z1, f x2 y2 z2, f x3 y3 z3..] --zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d] -- | the same as flip (-). -- -- Because - is treated specially in the Haskell grammar, -- (- e) is not a section, but an application of -- prefix negation. However, (subtract -- exp) is equivalent to the disallowed section. subtract :: Num a => a -> a -> a -- | The lex function reads a single lexeme from the input, -- discarding initial white space, and returning the characters that -- constitute the lexeme. If the input string contains only white space, -- lex returns a single successful `lexeme' consisting of the -- empty string. (Thus lex "" = [("","")].) If there is -- no legal lexeme at the beginning of the input string, lex fails -- (i.e. returns []). -- -- This lexer is not completely faithful to the Haskell lexical syntax in -- the following respects: -- --
-- main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]]) --appendFile :: FilePath -> String -> IO () -- | Read a character from the standard input device (same as -- hGetChar stdin). getChar :: IO Char -- | The getContents operation returns all user input as a single -- string, which is read lazily as it is needed (same as -- hGetContents stdin). getContents :: IO String -- | Read a line from the standard input device (same as hGetLine -- stdin). getLine :: IO String -- | The interact function takes a function of type -- String->String as its argument. The entire input from the -- standard input device is passed to this function as its argument, and -- the resulting string is output on the standard output device. interact :: (String -> String) -> IO () -- | The print function outputs a value of any printable type to the -- standard output device. Printable types are those that are instances -- of class Show; print converts values to strings for -- output using the show operation and adds a newline. -- -- For example, a program to print the first 20 integers and their powers -- of 2 could be written as: -- --
-- main = print ([(n, 2^n) | n <- [0..19]]) --print :: Show a => a -> IO () -- | Write a character to the standard output device (same as -- hPutChar stdout). putChar :: Char -> IO () -- | Write a string to the standard output device (same as hPutStr -- stdout). putStr :: String -> IO () -- | The same as putStr, but adds a newline character. putStrLn :: String -> IO () -- | The readFile function reads a file and returns the contents of -- the file as a string. The file is read lazily, on demand, as with -- getContents. readFile :: FilePath -> IO String -- | The readIO function is similar to read except that it -- signals parse failure to the IO monad instead of terminating -- the program. readIO :: Read a => String -> IO a -- | The readLn function combines getLine and readIO. readLn :: Read a => IO a -- | The computation writeFile file str function writes the -- string str, to the file file. writeFile :: FilePath -> String -> IO () -- | The read function reads input from a string, which must be -- completely consumed by the input process. read fails with an -- error if the parse is unsuccessful, and it is therefore -- discouraged from being used in real applications. Use readMaybe -- or readEither for safe alternatives. -- --
-- >>> read "123" :: Int -- 123 ---- --
-- >>> read "hello" :: Int -- *** Exception: Prelude.read: no parse --read :: Read a => String -> a -- | equivalent to readsPrec with a precedence of 0. reads :: Read a => ReadS a -- | Boolean "and", lazy in the second argument (&&) :: Bool -> Bool -> Bool infixr 3 && -- | Boolean "not" not :: Bool -> Bool -- | Boolean "or", lazy in the second argument (||) :: Bool -> Bool -> Bool infixr 2 || -- | Application operator. This operator is redundant, since ordinary -- application (f x) means the same as (f $ x). -- However, $ has low, right-associative binding precedence, so it -- sometimes allows parentheses to be omitted; for example: -- --
-- f $ g $ h x = f (g (h x)) ---- -- It is also useful in higher-order situations, such as map -- ($ 0) xs, or zipWith ($) fs xs. -- -- Note that ($) is levity-polymorphic in its result -- type, so that foo $ True where foo :: Bool -> -- Int# is well-typed. ($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 $ -- | error stops execution and displays an error message. error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a -- | A variant of error that does not produce a stack trace. errorWithoutStackTrace :: forall (r :: RuntimeRep) (a :: TYPE r). [Char] -> a -- | A special case of error. It is expected that compilers will -- recognize this and insert error messages which are more appropriate to -- the context in which undefined appears. undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a -- | The value of seq a b is bottom if a is bottom, and -- otherwise equal to b. In other words, it evaluates the first -- argument a to weak head normal form (WHNF). seq is -- usually introduced to improve performance by avoiding unneeded -- laziness. -- -- A note on evaluation order: the expression seq a b does -- not guarantee that a will be evaluated before -- b. The only guarantee given by seq is that the both -- a and b will be evaluated before seq -- returns a value. In particular, this means that b may be -- evaluated before a. If you need to guarantee a specific order -- of evaluation, you must use the function pseq from the -- "parallel" package. seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b infixr 0 `seq` -- | Does the element occur in the structure? -- -- Note: elem is often used in infix form. -- --
-- >>> 3 `elem` [] -- False ---- --
-- >>> 3 `elem` [1,2] -- False ---- --
-- >>> 3 `elem` [1,2,3,4,5] -- True ---- -- For infinite structures, the default implementation of elem -- terminates if the sought-after value exists at a finite distance from -- the left side of the structure: -- --
-- >>> 3 `elem` [1..] -- True ---- --
-- >>> 3 `elem` ([4..] ++ [3]) -- * Hangs forever * --elem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 `elem` -- | Map each element of the structure into a monoid, and combine the -- results with (<>). This fold is -- right-associative and lazy in the accumulator. For strict -- left-associative folds consider foldMap' instead. -- --
-- >>> foldMap Sum [1, 3, 5]
-- Sum {getSum = 9}
--
--
--
-- >>> foldMap Product [1, 3, 5]
-- Product {getProduct = 15}
--
--
-- -- >>> foldMap (replicate 3) [1, 2, 3] -- [1,1,1,2,2,2,3,3,3] ---- -- When a Monoid's (<>) is lazy in its second -- argument, foldMap can return a result even from an unbounded -- structure. For example, lazy accumulation enables -- Data.ByteString.Builder to efficiently serialise large data -- structures and produce the output incrementally: -- --
-- >>> import qualified Data.ByteString.Lazy as L -- -- >>> import qualified Data.ByteString.Builder as B -- -- >>> let bld :: Int -> B.Builder; bld i = B.intDec i <> B.word8 0x20 -- -- >>> let lbs = B.toLazyByteString $ foldMap bld [0..] -- -- >>> L.take 64 lbs -- "0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24" --foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m -- | Left-associative fold of a structure, lazy in the accumulator. This is -- rarely what you want, but can work well for structures with efficient -- right-to-left sequencing and an operator that is lazy in its left -- argument. -- -- In the case of lists, foldl, when applied to a binary operator, -- a starting value (typically the left-identity of the operator), and a -- list, reduces the list using the binary operator, from left to right: -- --
-- foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn ---- -- Note that to produce the outermost application of the operator the -- entire input list must be traversed. Like all left-associative folds, -- foldl will diverge if given an infinite list. -- -- If you want an efficient strict left-fold, you probably want to use -- foldl' instead of foldl. The reason for this is that the -- latter does not force the inner results (e.g. z `f` x1 -- in the above example) before applying them to the operator (e.g. to -- (`f` x2)). This results in a thunk chain <math> -- elements long, which then must be evaluated from the outside-in. -- -- For a general Foldable structure this should be semantically -- identical to: -- --
-- foldl f z = foldl f z . toList ---- --
-- >>> foldl (+) 42 [1,2,3,4] -- 52 ---- -- Though the result below is lazy, the input is reversed before -- prepending it to the initial accumulator, so corecursion begins only -- after traversing the entire input string. -- --
-- >>> foldl (\acc c -> c : acc) "abcd" "efgh" -- "hgfeabcd" ---- -- A left fold of a structure that is infinite on the right cannot -- terminate, even when for any finite input the fold just returns the -- initial accumulator: -- --
-- >>> foldl (\a _ -> a) 0 $ repeat 1 -- * Hangs forever * ---- -- WARNING: When it comes to lists, you always want to use either -- foldl' or foldr instead. foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b -- | A variant of foldl that has no base case, and thus may only be -- applied to non-empty structures. -- -- This function is non-total and will raise a runtime exception if the -- structure happens to be empty. -- --
-- foldl1 f = foldl1 f . toList ---- --
-- >>> foldl1 (+) [1..4] -- 10 ---- --
-- >>> foldl1 (+) [] -- *** Exception: Prelude.foldl1: empty list ---- --
-- >>> foldl1 (+) Nothing -- *** Exception: foldl1: empty structure ---- --
-- >>> foldl1 (-) [1..4] -- -8 ---- --
-- >>> foldl1 (&&) [True, False, True, True] -- False ---- --
-- >>> foldl1 (||) [False, False, True, True] -- True ---- --
-- >>> foldl1 (+) [1..] -- * Hangs forever * --foldl1 :: Foldable t => (a -> a -> a) -> t a -> a -- | Right-associative fold of a structure, lazy in the accumulator. -- -- In the case of lists, foldr, when applied to a binary operator, -- a starting value (typically the right-identity of the operator), and a -- list, reduces the list using the binary operator, from right to left: -- --
-- foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...) ---- -- Note that since the head of the resulting expression is produced by an -- application of the operator to the first element of the list, given an -- operator lazy in its right argument, foldr can produce a -- terminating expression from an unbounded list. -- -- For a general Foldable structure this should be semantically -- identical to, -- --
-- foldr f z = foldr f z . toList ---- --
-- >>> foldr (||) False [False, True, False] -- True ---- --
-- >>> foldr (||) False [] -- False ---- --
-- >>> foldr (\c acc -> acc ++ [c]) "foo" ['a', 'b', 'c', 'd'] -- "foodcba" ---- --
-- >>> foldr (||) False (True : repeat False) -- True ---- -- But the following doesn't terminate: -- --
-- >>> foldr (||) False (repeat False ++ [True]) -- * Hangs forever * ---- --
-- >>> take 5 $ foldr (\i acc -> i : fmap (+3) acc) [] (repeat 1) -- [1,4,7,10,13] --foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b -- | A variant of foldr that has no base case, and thus may only be -- applied to non-empty structures. -- -- This function is non-total and will raise a runtime exception if the -- structure happens to be empty. -- --
-- >>> foldr1 (+) [1..4] -- 10 ---- --
-- >>> foldr1 (+) [] -- Exception: Prelude.foldr1: empty list ---- --
-- >>> foldr1 (+) Nothing -- *** Exception: foldr1: empty structure ---- --
-- >>> foldr1 (-) [1..4] -- -2 ---- --
-- >>> foldr1 (&&) [True, False, True, True] -- False ---- --
-- >>> foldr1 (||) [False, False, True, True] -- True ---- --
-- >>> foldr1 (+) [1..] -- * Hangs forever * --foldr1 :: Foldable t => (a -> a -> a) -> t a -> a -- | Returns the size/length of a finite structure as an Int. The -- default implementation just counts elements starting with the -- leftmost. Instances for structures that can compute the element count -- faster than via element-by-element counting, should provide a -- specialised implementation. -- --
-- >>> length [] -- 0 ---- --
-- >>> length ['a', 'b', 'c'] -- 3 -- -- >>> length [1..] -- * Hangs forever * --length :: Foldable t => t a -> Int -- | The largest element of a non-empty structure. -- -- This function is non-total and will raise a runtime exception if the -- structure happens to be empty. A structure that supports random access -- and maintains its elements in order should provide a specialised -- implementation to return the maximum in faster than linear time. -- --
-- >>> maximum [1..10] -- 10 ---- --
-- >>> maximum [] -- *** Exception: Prelude.maximum: empty list ---- --
-- >>> maximum Nothing -- *** Exception: maximum: empty structure ---- -- WARNING: This function is partial for possibly-empty structures like -- lists. maximum :: (Foldable t, Ord a) => t a -> a -- | The least element of a non-empty structure. -- -- This function is non-total and will raise a runtime exception if the -- structure happens to be empty. A structure that supports random access -- and maintains its elements in order should provide a specialised -- implementation to return the minimum in faster than linear time. -- --
-- >>> minimum [1..10] -- 1 ---- --
-- >>> minimum [] -- *** Exception: Prelude.minimum: empty list ---- --
-- >>> minimum Nothing -- *** Exception: minimum: empty structure ---- -- WARNING: This function is partial for possibly-empty structures like -- lists. minimum :: (Foldable t, Ord a) => t a -> a -- | Test whether the structure is empty. The default implementation is -- Left-associative and lazy in both the initial element and the -- accumulator. Thus optimised for structures where the first element can -- be accessed in constant time. Structures where this is not the case -- should have a non-default implementation. -- --
-- >>> null [] -- True ---- --
-- >>> null [1] -- False ---- -- null is expected to terminate even for infinite structures. The -- default implementation terminates provided the structure is bounded on -- the left (there is a leftmost element). -- --
-- >>> null [1..] -- False --null :: Foldable t => t a -> Bool -- | The product function computes the product of the numbers of a -- structure. -- --
-- >>> product [] -- 1 ---- --
-- >>> product [42] -- 42 ---- --
-- >>> product [1..10] -- 3628800 ---- --
-- >>> product [4.1, 2.0, 1.7] -- 13.939999999999998 ---- --
-- >>> product [1..] -- * Hangs forever * --product :: (Foldable t, Num a) => t a -> a -- | The sum function computes the sum of the numbers of a -- structure. -- --
-- >>> sum [] -- 0 ---- --
-- >>> sum [42] -- 42 ---- --
-- >>> sum [1..10] -- 55 ---- --
-- >>> sum [4.1, 2.0, 1.7] -- 7.8 ---- --
-- >>> sum [1..] -- * Hangs forever * --sum :: (Foldable t, Num a) => t a -> a -- | Map each element of a structure to a monadic action, evaluate these -- actions from left to right, and collect the results. For a version -- that ignores the results see mapM_. -- --
-- >>> sequence $ Right [1,2,3,4] -- [Right 1,Right 2,Right 3,Right 4] ---- --
-- >>> sequence $ [Right 1,Right 2,Right 3,Right 4] -- Right [1,2,3,4] ---- -- The following examples demonstrate short circuit behavior for -- sequence. -- --
-- >>> sequence $ Left [1,2,3,4] -- Left [1,2,3,4] ---- --
-- >>> sequence $ [Left 0, Right 1,Right 2,Right 3,Right 4] -- Left 0 --sequence :: (Traversable t, Monad m) => t (m a) -> m (t a) -- | Evaluate each action in the structure from left to right, and collect -- the results. For a version that ignores the results see -- sequenceA_. -- --
-- >>> sequenceA [Just 1, Just 2, Just 3] -- Just [1,2,3] ---- --
-- >>> sequenceA [Right 1, Right 2, Right 3] -- Right [1,2,3] ---- -- The next two example show Nothing and Just will short -- circuit the resulting structure if present in the input. For more -- context, check the Traversable instances for Either and -- Maybe. -- --
-- >>> sequenceA [Just 1, Just 2, Just 3, Nothing] -- Nothing ---- --
-- >>> sequenceA [Right 1, Right 2, Right 3, Left 4] -- Left 4 --sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a) -- | Map each element of a structure to an action, evaluate these actions -- from left to right, and collect the results. For a version that -- ignores the results see traverse_. -- --
-- >>> traverse Just [1,2,3,4] -- Just [1,2,3,4] ---- --
-- >>> traverse id [Right 1, Right 2, Right 3, Right 4] -- Right [1,2,3,4] ---- -- In the next examples, we show that Nothing and Left -- values short circuit the created structure. -- --
-- >>> traverse (const Nothing) [1,2,3,4] -- Nothing ---- --
-- >>> traverse (\x -> if odd x then Just x else Nothing) [1,2,3,4] -- Nothing ---- --
-- >>> traverse id [Right 1, Right 2, Right 3, Right 4, Left 0] -- Left 0 --traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b) -- | Sequence actions, discarding the value of the first argument. -- --
-- >>> Just 2 *> Just 3 -- Just 3 ---- --
-- >>> Nothing *> Just 3 -- Nothing ---- -- Of course a more interesting use case would be to have effectful -- computations instead of just returning pure values. -- --
-- >>> import Data.Char
--
-- >>> import Text.ParserCombinators.ReadP
--
-- >>> let p = string "my name is " *> munch1 isAlpha <* eof
--
-- >>> readP_to_S p "my name is Simon"
-- [("Simon","")]
--
(*>) :: Applicative f => f a -> f b -> f b
infixl 4 *>
-- | Sequence actions, discarding the value of the second argument.
(<*) :: Applicative f => f a -> f b -> f a
infixl 4 <*
-- | Sequential application.
--
-- A few functors support an implementation of <*> that is
-- more efficient than the default one.
--
--
-- >>> data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
--
--
-- -- >>> produceFoo :: Applicative f => f Foo ---- --
-- >>> produceBar :: Applicative f => f Bar -- -- >>> produceBaz :: Applicative f => f Baz ---- --
-- >>> mkState :: Applicative f => f MyState -- -- >>> mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz --(<*>) :: Applicative f => f (a -> b) -> f a -> f b infixl 4 <*> -- | Lift a value. pure :: Applicative f => a -> f a -- | Lift a binary function to actions. -- -- Some functors support an implementation of liftA2 that is more -- efficient than the default one. In particular, if fmap is an -- expensive operation, it is likely better to use liftA2 than to -- fmap over the structure and then use <*>. -- -- This became a typeclass method in 4.10.0.0. Prior to that, it was a -- function defined in terms of <*> and fmap. -- --
-- >>> liftA2 (,) (Just 3) (Just 5) -- Just (3,5) --liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c -- | Replace all locations in the input with the same value. The default -- definition is fmap . const, but this may be -- overridden with a more efficient version. (<$) :: Functor f => a -> f b -> f a infixl 4 <$ -- | fmap is used to apply a function of type (a -> b) -- to a value of type f a, where f is a functor, to produce a -- value of type f b. Note that for any type constructor with -- more than one parameter (e.g., Either), only the last type -- parameter can be modified with fmap (e.g., b in -- `Either a b`). -- -- Some type constructors with two parameters or more have a -- Bifunctor instance that allows both the last and the -- penultimate parameters to be mapped over. -- --
-- >>> fmap show Nothing -- Nothing -- -- >>> fmap show (Just 3) -- Just "3" ---- -- Convert from an Either Int Int to an Either Int -- String using show: -- --
-- >>> fmap show (Left 17) -- Left 17 -- -- >>> fmap show (Right 17) -- Right "17" ---- -- Double each element of a list: -- --
-- >>> fmap (*2) [1,2,3] -- [2,4,6] ---- -- Apply even to the second element of a pair: -- --
-- >>> fmap even (2,2) -- (2,True) ---- -- It may seem surprising that the function is only applied to the last -- element of the tuple compared to the list example above which applies -- it to every element in the list. To understand, remember that tuples -- are type constructors with multiple type parameters: a tuple of 3 -- elements (a,b,c) can also be written (,,) a b c and -- its Functor instance is defined for Functor ((,,) a -- b) (i.e., only the third parameter is free to be mapped over with -- fmap). -- -- It explains why fmap can be used with tuples containing -- values of different types as in the following example: -- --
-- >>> fmap even ("hello", 1.0, 4)
-- ("hello",1.0,True)
--
fmap :: Functor f => (a -> b) -> f a -> f b
-- | Sequentially compose two actions, discarding any value produced by the
-- first, like sequencing operators (such as the semicolon) in imperative
-- languages.
--
-- 'as >> bs' can be understood as the do
-- expression
--
-- -- do as -- bs --(>>) :: Monad m => m a -> m b -> m b infixl 1 >> -- | Sequentially compose two actions, passing any value produced by the -- first as an argument to the second. -- -- 'as >>= bs' can be understood as the do -- expression -- --
-- do a <- as -- bs a --(>>=) :: Monad m => m a -> (a -> m b) -> m b infixl 1 >>= fail :: MonadFail m => String -> m a -- | Inject a value into the monadic type. return :: Monad m => a -> m a -- | An associative operation -- -- NOTE: This method is redundant and has the default -- implementation mappend = (<>) since -- base-4.11.0.0. Should it be implemented manually, since -- mappend is a synonym for (<>), it is expected that -- the two functions are defined the same way. In a future GHC release -- mappend will be removed from Monoid. mappend :: Monoid a => a -> a -> a -- | Fold a list using the monoid. -- -- For most types, the default definition for mconcat will be -- used, but the function is included in the class definition so that an -- optimized version can be provided for specific types. -- --
-- >>> mconcat ["Hello", " ", "Haskell", "!"] -- "Hello Haskell!" --mconcat :: Monoid a => [a] -> a -- | Identity of mappend -- --
-- >>> "Hello world" <> mempty -- "Hello world" --mempty :: Monoid a => a -- | An associative operation. -- --
-- >>> [1,2,3] <> [4,5,6] -- [1,2,3,4,5,6] --(<>) :: Semigroup a => a -> a -> a infixr 6 <> maxBound :: Bounded a => a minBound :: Bounded a => a -- | Used in Haskell's translation of [n..] with [n..] = -- enumFrom n, a possible implementation being enumFrom n = n : -- enumFrom (succ n). For example: -- --
enumFrom 4 :: [Integer] = [4,5,6,7,...]
enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: -- Int]
enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: -- Int]
enumFromThenTo 4 2 -6 :: [Integer] = -- [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 :: [Int] = []
enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
enumFromTo 42 1 :: [Integer] = []
-- abs x * signum x == x ---- -- For real numbers, the signum is either -1 (negative), -- 0 (zero) or 1 (positive). signum :: Num a => a -> a -- | The method readList is provided to allow the programmer to give -- a specialised way of parsing lists of values. For example, this is -- used by the predefined Read instance of the Char type, -- where values of type String should be are expected to use -- double quotes, rather than square brackets. readList :: Read a => ReadS [a] -- | attempts to parse a value from the front of the string, returning a -- list of (parsed value, remaining string) pairs. If there is no -- successful parse, the returned list is empty. -- -- Derived instances of Read and Show satisfy the -- following: -- -- -- -- That is, readsPrec parses the string produced by -- showsPrec, and delivers the value that showsPrec started -- with. readsPrec :: Read a => Int -> ReadS a -- | Fractional division. (/) :: Fractional a => a -> a -> a infixl 7 / -- | Conversion from a Rational (that is Ratio -- Integer). A floating literal stands for an application of -- fromRational to a value of type Rational, so such -- literals have type (Fractional a) => a. fromRational :: Fractional a => Rational -> a -- | Reciprocal fraction. recip :: Fractional a => a -> a -- | integer division truncated toward negative infinity div :: Integral a => a -> a -> a infixl 7 `div` -- | simultaneous div and mod divMod :: Integral a => a -> a -> (a, a) -- | integer modulus, satisfying -- --
-- (x `div` y)*y + (x `mod` y) == x --mod :: Integral a => a -> a -> a infixl 7 `mod` -- | integer division truncated toward zero quot :: Integral a => a -> a -> a infixl 7 `quot` -- | simultaneous quot and rem quotRem :: Integral a => a -> a -> (a, a) -- | integer remainder, satisfying -- --
-- (x `quot` y)*y + (x `rem` y) == x --rem :: Integral a => a -> a -> a infixl 7 `rem` -- | conversion to Integer toInteger :: Integral a => a -> Integer -- | the rational equivalent of its real argument with full precision toRational :: Real a => a -> Rational -- | ceiling x returns the least integer not less than -- x ceiling :: (RealFrac a, Integral b) => a -> b -- | floor x returns the greatest integer not greater than -- x floor :: (RealFrac a, Integral b) => a -> b -- | The function properFraction takes a real fractional number -- x and returns a pair (n,f) such that x = -- n+f, and: -- --
-- showsPrec d x r ++ s == showsPrec d x (r ++ s) ---- -- Derived instances of Read and Show satisfy the -- following: -- -- -- -- That is, readsPrec parses the string produced by -- showsPrec, and delivers the value that showsPrec started -- with. showsPrec :: Show a => Int -> a -> ShowS (/=) :: Eq a => a -> a -> Bool infix 4 /= (==) :: Eq a => a -> a -> Bool infix 4 == (<) :: Ord a => a -> a -> Bool infix 4 < (<=) :: Ord a => a -> a -> Bool infix 4 <= (>) :: Ord a => a -> a -> Bool infix 4 > (>=) :: Ord a => a -> a -> Bool infix 4 >= compare :: Ord a => a -> a -> Ordering max :: Ord a => a -> a -> a min :: Ord a => a -> a -> a -- | A functor with application, providing operations to -- --
-- (<*>) = liftA2 id ---- --
-- liftA2 f x y = f <$> x <*> y ---- -- Further, any definition must satisfy the following: -- --
pure id <*> v = -- v
pure (.) <*> u -- <*> v <*> w = u <*> (v -- <*> w)
pure f <*> -- pure x = pure (f x)
u <*> pure y = -- pure ($ y) <*> u
-- forall x y. p (q x y) = f x . g y ---- -- it follows from the above that -- --
-- liftA2 p (liftA2 q u v) = liftA2 f u . liftA2 g v ---- -- If f is also a Monad, it should satisfy -- -- -- -- (which implies that pure and <*> satisfy the -- applicative functor laws). class Functor f => Applicative (f :: Type -> Type) -- | The Bounded class is used to name the upper and lower limits of -- a type. Ord is not a superclass of Bounded since types -- that are not totally ordered may also have upper and lower bounds. -- -- The Bounded class may be derived for any enumeration type; -- minBound is the first constructor listed in the data -- declaration and maxBound is the last. Bounded may also -- be derived for single-constructor datatypes whose constituent types -- are in Bounded. class Bounded a -- | Class Enum defines operations on sequentially ordered types. -- -- The enumFrom... methods are used in Haskell's translation of -- arithmetic sequences. -- -- Instances of Enum may be derived for any enumeration type -- (types whose constructors have no fields). The nullary constructors -- are assumed to be numbered left-to-right by fromEnum from -- 0 through n-1. See Chapter 10 of the Haskell -- Report for more details. -- -- For any type that is an instance of class Bounded as well as -- Enum, the following should hold: -- --
-- enumFrom x = enumFromTo x maxBound -- enumFromThen x y = enumFromThenTo x y bound -- where -- bound | fromEnum y >= fromEnum x = maxBound -- | otherwise = minBound --class Enum a -- | The Eq class defines equality (==) and inequality -- (/=). All the basic datatypes exported by the Prelude -- are instances of Eq, and Eq may be derived for any -- datatype whose constituents are also instances of Eq. -- -- The Haskell Report defines no laws for Eq. However, instances -- are encouraged to follow these properties: -- --
-- {-# LANGUAGE DeriveFoldable #-}
-- data Tree a = Empty
-- | Leaf a
-- | Node (Tree a) a (Tree a)
-- deriving Foldable
--
--
-- A more detailed description can be found in the Overview
-- section of Data.Foldable#overview.
--
-- For the class laws see the Laws section of
-- Data.Foldable#laws.
class Foldable (t :: TYPE LiftedRep -> Type)
-- | Fractional numbers, supporting real division.
--
-- The Haskell Report defines no laws for Fractional. However,
-- (+) and (*) are customarily expected
-- to define a division ring and have the following properties:
--
-- -- fail s >>= f = fail s ---- -- If your Monad is also MonadPlus, a popular definition is -- --
-- fail _ = mzero --class Monad m => MonadFail (m :: Type -> Type) -- | The class of monoids (types with an associative binary operation that -- has an identity). Instances should satisfy the following: -- --
-- infixr 5 :^: -- data Tree a = Leaf a | Tree a :^: Tree a ---- -- the derived instance of Read in Haskell 2010 is equivalent to -- --
-- instance (Read a) => Read (Tree a) where
--
-- readsPrec d r = readParen (d > app_prec)
-- (\r -> [(Leaf m,t) |
-- ("Leaf",s) <- lex r,
-- (m,t) <- readsPrec (app_prec+1) s]) r
--
-- ++ readParen (d > up_prec)
-- (\r -> [(u:^:v,w) |
-- (u,s) <- readsPrec (up_prec+1) r,
-- (":^:",t) <- lex s,
-- (v,w) <- readsPrec (up_prec+1) t]) r
--
-- where app_prec = 10
-- up_prec = 5
--
--
-- Note that right-associativity of :^: is unused.
--
-- The derived instance in GHC is equivalent to
--
-- -- instance (Read a) => Read (Tree a) where -- -- readPrec = parens $ (prec app_prec $ do -- Ident "Leaf" <- lexP -- m <- step readPrec -- return (Leaf m)) -- -- +++ (prec up_prec $ do -- u <- step readPrec -- Symbol ":^:" <- lexP -- v <- step readPrec -- return (u :^: v)) -- -- where app_prec = 10 -- up_prec = 5 -- -- readListPrec = readListPrecDefault ---- -- Why do both readsPrec and readPrec exist, and why does -- GHC opt to implement readPrec in derived Read instances -- instead of readsPrec? The reason is that readsPrec is -- based on the ReadS type, and although ReadS is mentioned -- in the Haskell 2010 Report, it is not a very efficient parser data -- structure. -- -- readPrec, on the other hand, is based on a much more efficient -- ReadPrec datatype (a.k.a "new-style parsers"), but its -- definition relies on the use of the RankNTypes language -- extension. Therefore, readPrec (and its cousin, -- readListPrec) are marked as GHC-only. Nevertheless, it is -- recommended to use readPrec instead of readsPrec -- whenever possible for the efficiency improvements it brings. -- -- As mentioned above, derived Read instances in GHC will -- implement readPrec instead of readsPrec. The default -- implementations of readsPrec (and its cousin, readList) -- will simply use readPrec under the hood. If you are writing a -- Read instance by hand, it is recommended to write it like so: -- --
-- instance Read T where -- readPrec = ... -- readListPrec = readListPrecDefault --class Read a class (Num a, Ord a) => Real a -- | Efficient, machine-independent access to the components of a -- floating-point number. class (RealFrac a, Floating a) => RealFloat a -- | Extracting components of fractions. class (Real a, Fractional a) => RealFrac a -- | The class of semigroups (types with an associative binary operation). -- -- Instances should satisfy the following: -- -- class Semigroup a -- | Conversion of values to readable Strings. -- -- Derived instances of Show have the following properties, which -- are compatible with derived instances of Read: -- --
-- infixr 5 :^: -- data Tree a = Leaf a | Tree a :^: Tree a ---- -- the derived instance of Show is equivalent to -- --
-- instance (Show a) => Show (Tree a) where -- -- showsPrec d (Leaf m) = showParen (d > app_prec) $ -- showString "Leaf " . showsPrec (app_prec+1) m -- where app_prec = 10 -- -- showsPrec d (u :^: v) = showParen (d > up_prec) $ -- showsPrec (up_prec+1) u . -- showString " :^: " . -- showsPrec (up_prec+1) v -- where up_prec = 5 ---- -- Note that right-associativity of :^: is ignored. For example, -- --
-- >>> let s = Left "foo" :: Either String Int -- -- >>> s -- Left "foo" -- -- >>> let n = Right 3 :: Either String Int -- -- >>> n -- Right 3 -- -- >>> :type s -- s :: Either String Int -- -- >>> :type n -- n :: Either String Int ---- -- The fmap from our Functor instance will ignore -- Left values, but will apply the supplied function to values -- contained in a Right: -- --
-- >>> let s = Left "foo" :: Either String Int -- -- >>> let n = Right 3 :: Either String Int -- -- >>> fmap (*2) s -- Left "foo" -- -- >>> fmap (*2) n -- Right 6 ---- -- The Monad instance for Either allows us to chain -- together multiple actions which may fail, and fail overall if any of -- the individual steps failed. First we'll write a function that can -- either parse an Int from a Char, or fail. -- --
-- >>> import Data.Char ( digitToInt, isDigit )
--
-- >>> :{
-- let parseEither :: Char -> Either String Int
-- parseEither c
-- | isDigit c = Right (digitToInt c)
-- | otherwise = Left "parse error"
--
-- >>> :}
--
--
-- The following should work, since both '1' and '2'
-- can be parsed as Ints.
--
--
-- >>> :{
-- let parseMultiple :: Either String Int
-- parseMultiple = do
-- x <- parseEither '1'
-- y <- parseEither '2'
-- return (x + y)
--
-- >>> :}
--
--
-- -- >>> parseMultiple -- Right 3 ---- -- But the following should fail overall, since the first operation where -- we attempt to parse 'm' as an Int will fail: -- --
-- >>> :{
-- let parseMultiple :: Either String Int
-- parseMultiple = do
-- x <- parseEither 'm'
-- y <- parseEither '2'
-- return (x + y)
--
-- >>> :}
--
--
-- -- >>> parseMultiple -- Left "parse error" --data Either a b Left :: a -> Either a b Right :: b -> Either a b -- | The Maybe type encapsulates an optional value. A value of type -- Maybe a either contains a value of type a -- (represented as Just a), or it is empty (represented -- as Nothing). Using Maybe is a good way to deal with -- errors or exceptional cases without resorting to drastic measures such -- as error. -- -- The Maybe type is also a monad. It is a simple kind of error -- monad, where all errors are represented by Nothing. A richer -- error monad can be built using the Either type. data Maybe a Nothing :: Maybe a Just :: a -> Maybe a data Ordering LT :: Ordering EQ :: Ordering GT :: Ordering -- | File and directory names are values of type String, whose -- precise meaning is operating system dependent. Files can be opened, -- yielding a handle which can then be used to operate on the contents of -- that file. type FilePath = String -- | The Haskell 2010 type for exceptions in the IO monad. Any I/O -- operation may raise an IOException instead of returning a -- result. For a more general type of exception, including also those -- that arise in pure code, see Exception. -- -- In Haskell 2010, this is an opaque type. type IOError = IOException -- | Arbitrary-precision rational numbers, represented as a ratio of two -- Integer values. A rational number may be constructed using the -- % operator. type Rational = Ratio Integer -- | A parser for a type a, represented as a function that takes a -- String and returns a list of possible parses as -- (a,String) pairs. -- -- Note that this kind of backtracking parser is very inefficient; -- reading a large structure may be quite slow (cf ReadP). type ReadS a = String -> [(a, String)] -- | The shows functions return a function that prepends the -- output String to an existing String. This allows -- constant-time concatenation of results using function composition. type ShowS = String -> String -- | A String is a list of characters. String constants in Haskell -- are values of type String. -- -- See Data.List for operations on lists. type String = [Char] module Debug.Trace.Compat -- | Like trace but returns the message instead of a third value. -- --
-- >>> traceId "hello" -- hello -- "hello" --traceId :: String -> String -- | Like traceShow but returns the shown value instead of a third -- value. -- --
-- >>> traceShowId (1+2+3, "hello" ++ "world") -- (6,"helloworld") -- (6,"helloworld") --traceShowId :: Show a => a -> a -- | Like trace but returning unit in an arbitrary -- Applicative context. Allows for convenient use in do-notation. -- -- Note that the application of traceM is not an action in the -- Applicative context, as traceIO is in the IO -- type. While the fresh bindings in the following example will force the -- traceM expressions to be reduced every time the -- do-block is executed, traceM "not crashed" would -- only be reduced once, and the message would only be printed once. If -- your monad is in MonadIO, liftIO . -- traceIO may be a better option. -- --
-- >>> :{
-- do
-- x <- Just 3
-- traceM ("x: " ++ show x)
-- y <- pure 12
-- traceM ("y: " ++ show y)
-- pure (x*2 + y)
-- :}
-- x: 3
-- y: 12
-- Just 18
--
traceM :: Applicative f => String -> f ()
-- | Like traceM, but uses show on the argument to convert it
-- to a String.
--
--
-- >>> :{
-- do
-- x <- Just 3
-- traceShowM x
-- y <- pure 12
-- traceShowM y
-- pure (x*2 + y)
-- :}
-- 3
-- 12
-- Just 18
--
traceShowM :: (Show a, Applicative f) => a -> f ()
-- | Like trace, but outputs the result of calling a function on the
-- argument.
--
--
-- >>> traceWith fst ("hello","world")
-- hello
-- ("hello","world")
--
--
-- Since: 4.18.0.0
traceWith :: (a -> String) -> a -> a
-- | Like traceWith, but uses show on the result of the
-- function to convert it to a String.
--
-- -- >>> traceShowWith length [1,2,3] -- 3 -- [1,2,3] ---- -- Since: 4.18.0.0 traceShowWith :: Show b => (a -> b) -> a -> a -- | Like traceEvent, but emits the result of calling a function on -- its argument. -- -- Since: 4.18.0.0 traceEventWith :: (a -> String) -> a -> a -- | Reexports Debug.Trace.Compat from a globally unique namespace. module Debug.Trace.Compat.Repl module Data.Traversable.Compat -- | The mapAccumM function behaves like a combination of -- mapM and mapAccumL that traverses the structure while -- evaluating the actions and passing an accumulating parameter from left -- to right. It returns a final value of this accumulator together with -- the new structure. The accummulator is often used for caching the -- intermediate results of a computation. -- --
-- >>> let expensiveDouble a = putStrLn ("Doubling " <> show a) >> pure (2 * a)
--
-- >>> :{
-- mapAccumM (\cache a -> case lookup a cache of
-- Nothing -> expensiveDouble a >>= \double -> pure ((a, double):cache, double)
-- Just double -> pure (cache, double)
-- ) [] [1, 2, 3, 1, 2, 3]
-- :}
-- Doubling 1
-- Doubling 2
-- Doubling 3
-- ([(3,6),(2,4),(1,2)],[2,4,6,2,4,6])
--
mapAccumM :: forall m t s a b. (Monad m, Traversable t) => (s -> a -> m (s, b)) -> s -> t a -> m (s, t b)
-- | forAccumM is mapAccumM with the arguments rearranged.
forAccumM :: (Monad m, Traversable t) => s -> t a -> (s -> a -> m (s, b)) -> m (s, t b)
instance GHC.Base.Monad m => GHC.Base.Functor (Data.Traversable.Compat.StateT s m)
instance GHC.Base.Monad m => GHC.Base.Applicative (Data.Traversable.Compat.StateT s m)
instance GHC.Base.Monad m => GHC.Base.Monad (Data.Traversable.Compat.StateT s m)
-- | Reexports Data.Traversable.Compat from a globally unique
-- namespace.
module Data.Traversable.Compat.Repl
module Data.List.Compat
-- | List index (subscript) operator, starting from 0. Returns
-- Nothing if the index is out of bounds
--
-- -- >>> ['a', 'b', 'c'] !? 0 -- Just 'a' -- -- >>> ['a', 'b', 'c'] !? 2 -- Just 'c' -- -- >>> ['a', 'b', 'c'] !? 3 -- Nothing -- -- >>> ['a', 'b', 'c'] !? (-1) -- Nothing ---- -- This is the total variant of the partial !! operator. -- -- WARNING: This function takes linear time in the index. (!?) :: [a] -> Int -> Maybe a infixl 9 !? -- | <math>. Decompose a list into init and last. -- --
-- >>> unsnoc [] -- Nothing -- -- >>> unsnoc [1] -- Just ([],1) -- -- >>> unsnoc [1, 2, 3] -- Just ([1,2],3) ---- -- Laziness: -- --
-- >>> fst <$> unsnoc [undefined] -- Just [] -- -- >>> head . fst <$> unsnoc (1 : undefined) -- Just *** Exception: Prelude.undefined -- -- >>> head . fst <$> unsnoc (1 : 2 : undefined) -- Just 1 ---- -- unsnoc is dual to uncons: for a finite list xs -- --
-- unsnoc xs = (\(hd, tl) -> (reverse tl, hd)) <$> uncons (reverse xs) --unsnoc :: [a] -> Maybe ([a], a) -- | This backports the modern Data.Semigroup interface back to -- base-4.9/GHC 8.0. module Data.List.NonEmpty.Compat -- | Non-empty (and non-strict) list type. data NonEmpty a (:|) :: a -> [a] -> NonEmpty a infixr 5 :| -- | Map a function over a NonEmpty stream. map :: (a -> b) -> NonEmpty a -> NonEmpty b -- | 'intersperse x xs' alternates elements of the list with copies of -- x. -- --
-- intersperse 0 (1 :| [2,3]) == 1 :| [0,2,0,3] --intersperse :: a -> NonEmpty a -> NonEmpty a -- | scanl is similar to foldl, but returns a stream of -- successive reduced values from the left: -- --
-- scanl f z [x1, x2, ...] == z :| [z `f` x1, (z `f` x1) `f` x2, ...] ---- -- Note that -- --
-- last (scanl f z xs) == foldl f z xs. --scanl :: Foldable f => (b -> a -> b) -> b -> f a -> NonEmpty b -- | scanr is the right-to-left dual of scanl. Note that -- --
-- head (scanr f z xs) == foldr f z xs. --scanr :: Foldable f => (a -> b -> b) -> b -> f a -> NonEmpty b -- | scanl1 is a variant of scanl that has no starting value -- argument: -- --
-- scanl1 f [x1, x2, ...] == x1 :| [x1 `f` x2, x1 `f` (x2 `f` x3), ...] --scanl1 :: (a -> a -> a) -> NonEmpty a -> NonEmpty a -- | scanr1 is a variant of scanr that has no starting value -- argument. scanr1 :: (a -> a -> a) -> NonEmpty a -> NonEmpty a -- | transpose for NonEmpty, behaves the same as -- transpose The rows/columns need not be the same length, in -- which case > transpose . transpose /= id transpose :: NonEmpty (NonEmpty a) -> NonEmpty (NonEmpty a) -- | sortBy for NonEmpty, behaves the same as sortBy sortBy :: (a -> a -> Ordering) -> NonEmpty a -> NonEmpty a -- | sortWith for NonEmpty, behaves the same as: -- --
-- sortBy . comparing --sortWith :: Ord o => (a -> o) -> NonEmpty a -> NonEmpty a -- | Number of elements in NonEmpty list. length :: NonEmpty a -> Int -- | Extract the first element of the stream. head :: NonEmpty a -> a -- | Extract the possibly-empty tail of the stream. tail :: NonEmpty a -> [a] -- | Extract the last element of the stream. last :: NonEmpty a -> a -- | Extract everything except the last element of the stream. init :: NonEmpty a -> [a] -- | Construct a NonEmpty list from a single element. singleton :: a -> NonEmpty a -- | Prepend an element to the stream. (<|) :: a -> NonEmpty a -> NonEmpty a infixr 5 <| -- | Synonym for <|. cons :: a -> NonEmpty a -> NonEmpty a -- | uncons produces the first element of the stream, and a stream -- of the remaining elements, if any. uncons :: NonEmpty a -> (a, Maybe (NonEmpty a)) -- | The unfoldr function is analogous to Data.List's -- unfoldr operation. unfoldr :: (a -> (b, Maybe a)) -> a -> NonEmpty b -- | Sort a stream. sort :: Ord a => NonEmpty a -> NonEmpty a -- | reverse a finite NonEmpty stream. reverse :: NonEmpty a -> NonEmpty a -- | The inits function takes a stream xs and returns all -- the finite prefixes of xs. inits :: Foldable f => f a -> NonEmpty [a] -- | The inits1 function takes a NonEmpty stream xs -- and returns all the NonEmpty finite prefixes of xs, -- starting with the shortest. -- --
-- inits1 (1 :| [2,3]) == (1 :| []) :| [1 :| [2], 1 :| [2,3]] -- inits1 (1 :| []) == (1 :| []) :| [] ---- -- Since: 4.18 inits1 :: NonEmpty a -> NonEmpty (NonEmpty a) -- | The tails function takes a stream xs and returns all -- the suffixes of xs. tails :: Foldable f => f a -> NonEmpty [a] -- | The tails1 function takes a NonEmpty stream xs -- and returns all the non-empty suffixes of xs, starting with -- the longest. -- --
-- tails1 (1 :| [2,3]) == (1 :| [2,3]) :| [2 :| [3], 3 :| []] -- tails1 (1 :| []) == (1 :| []) :| [] ---- -- Since: 4.18 tails1 :: NonEmpty a -> NonEmpty (NonEmpty a) -- | iterate f x produces the infinite sequence of repeated -- applications of f to x. -- --
-- iterate f x = x :| [f x, f (f x), ..] --iterate :: (a -> a) -> a -> NonEmpty a -- | repeat x returns a constant stream, where all elements -- are equal to x. repeat :: a -> NonEmpty a -- | cycle xs returns the infinite repetition of -- xs: -- --
-- cycle (1 :| [2,3]) = 1 :| [2,3,1,2,3,...] --cycle :: NonEmpty a -> NonEmpty a -- | unfold produces a new stream by repeatedly applying the -- unfolding function to the seed value to produce an element of type -- b and a new seed value. When the unfolding function returns -- Nothing instead of a new seed value, the stream ends. unfold :: (a -> (b, Maybe a)) -> a -> NonEmpty b -- | insert x xs inserts x into the last position -- in xs where it is still less than or equal to the next -- element. In particular, if the list is sorted beforehand, the result -- will also be sorted. insert :: (Foldable f, Ord a) => a -> f a -> NonEmpty a -- | some1 x sequences x one or more times. some1 :: Alternative f => f a -> f (NonEmpty a) -- | take n xs returns the first n elements of -- xs. take :: Int -> NonEmpty a -> [a] -- | drop n xs drops the first n elements off the -- front of the sequence xs. drop :: Int -> NonEmpty a -> [a] -- | splitAt n xs returns a pair consisting of the prefix -- of xs of length n and the remaining stream -- immediately following this prefix. -- --
-- 'splitAt' n xs == ('take' n xs, 'drop' n xs)
-- xs == ys ++ zs where (ys, zs) = 'splitAt' n xs
--
splitAt :: Int -> NonEmpty a -> ([a], [a])
-- | takeWhile p xs returns the longest prefix of the
-- stream xs for which the predicate p holds.
takeWhile :: (a -> Bool) -> NonEmpty a -> [a]
-- | dropWhile p xs returns the suffix remaining after
-- takeWhile p xs.
dropWhile :: (a -> Bool) -> NonEmpty a -> [a]
-- | span p xs returns the longest prefix of xs
-- that satisfies p, together with the remainder of the stream.
--
--
-- 'span' p xs == ('takeWhile' p xs, 'dropWhile' p xs)
-- xs == ys ++ zs where (ys, zs) = 'span' p xs
--
span :: (a -> Bool) -> NonEmpty a -> ([a], [a])
-- | The break p function is equivalent to span
-- (not . p).
break :: (a -> Bool) -> NonEmpty a -> ([a], [a])
-- | filter p xs removes any elements from xs that
-- do not satisfy p.
filter :: (a -> Bool) -> NonEmpty a -> [a]
-- | The partition function takes a predicate p and a
-- stream xs, and returns a pair of lists. The first list
-- corresponds to the elements of xs for which p holds;
-- the second corresponds to the elements of xs for which
-- p does not hold.
--
--
-- 'partition' p xs = ('filter' p xs, 'filter' (not . p) xs)
--
partition :: (a -> Bool) -> NonEmpty a -> ([a], [a])
-- | The group function takes a stream and returns a list of streams
-- such that flattening the resulting list is equal to the argument.
-- Moreover, each stream in the resulting list contains only equal
-- elements. For example, in list notation:
--
-- -- 'group' $ 'cycle' "Mississippi" -- = "M" : "i" : "ss" : "i" : "ss" : "i" : "pp" : "i" : "M" : "i" : ... --group :: (Foldable f, Eq a) => f a -> [NonEmpty a] -- | groupBy operates like group, but uses the provided -- equality predicate instead of ==. groupBy :: Foldable f => (a -> a -> Bool) -> f a -> [NonEmpty a] -- | groupWith operates like group, but uses the provided -- projection when comparing for equality groupWith :: (Foldable f, Eq b) => (a -> b) -> f a -> [NonEmpty a] -- | groupAllWith operates like groupWith, but sorts the list -- first so that each equivalence class has, at most, one list in the -- output groupAllWith :: Ord b => (a -> b) -> [a] -> [NonEmpty a] -- | group1 operates like group, but uses the knowledge that -- its input is non-empty to produce guaranteed non-empty output. group1 :: Eq a => NonEmpty a -> NonEmpty (NonEmpty a) -- | groupBy1 is to group1 as groupBy is to -- group. groupBy1 :: (a -> a -> Bool) -> NonEmpty a -> NonEmpty (NonEmpty a) -- | groupWith1 is to group1 as groupWith is to -- group groupWith1 :: Eq b => (a -> b) -> NonEmpty a -> NonEmpty (NonEmpty a) -- | groupAllWith1 is to groupWith1 as groupAllWith is -- to groupWith groupAllWith1 :: Ord b => (a -> b) -> NonEmpty a -> NonEmpty (NonEmpty a) -- | The isPrefixOf function returns True if the first -- argument is a prefix of the second. isPrefixOf :: Eq a => [a] -> NonEmpty a -> Bool -- | The nub function removes duplicate elements from a list. In -- particular, it keeps only the first occurrence of each element. (The -- name nub means 'essence'.) It is a special case of -- nubBy, which allows the programmer to supply their own -- inequality test. nub :: Eq a => NonEmpty a -> NonEmpty a -- | The nubBy function behaves just like nub, except it uses -- a user-supplied equality predicate instead of the overloaded == -- function. nubBy :: (a -> a -> Bool) -> NonEmpty a -> NonEmpty a -- | xs !! n returns the element of the stream xs at -- index n. Note that the head of the stream has index 0. -- -- Beware: a negative or out-of-bounds index will cause an error. (!!) :: NonEmpty a -> Int -> a infixl 9 !! -- | The zip function takes two streams and returns a stream of -- corresponding pairs. zip :: NonEmpty a -> NonEmpty b -> NonEmpty (a, b) -- | The zipWith function generalizes zip. Rather than -- tupling the elements, the elements are combined using the function -- passed as the first argument. zipWith :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c -- | The unzip function is the inverse of the zip function. unzip :: Functor f => f (a, b) -> (f a, f b) -- | Converts a normal list to a NonEmpty stream. -- -- Raises an error if given an empty list. fromList :: [a] -> NonEmpty a -- | Convert a stream to a normal list efficiently. toList :: NonEmpty a -> [a] -- | nonEmpty efficiently turns a normal list into a NonEmpty -- stream, producing Nothing if the input is empty. nonEmpty :: [a] -> Maybe (NonEmpty a) -- | Compute n-ary logic exclusive OR operation on NonEmpty list. xor :: NonEmpty Bool -> Bool -- | Reexports Data.List.NonEmpty.Compat from a globally unique -- namespace. module Data.List.NonEmpty.Compat.Repl -- | Reexports Data.List.Compat from a globally unique namespace. module Data.List.Compat.Repl module Data.Function.Compat -- | & is a reverse application operator. This provides -- notational convenience. Its precedence is one higher than that of the -- forward application operator $, which allows & to be -- nested in $. -- --
-- >>> 5 & (+1) & show -- "6" --(&) :: a -> (a -> b) -> b infixl 1 & -- | applyWhen applies a function to a value if a condition is true, -- otherwise, it returns the value unchanged. -- -- It is equivalent to flip (bool id). -- -- Algebraic properties: -- -- -- -- Since: 4.18.0.0 applyWhen :: Bool -> (a -> a) -> a -> a -- | Reexports Data.Function.Compat from a globally unique -- namespace. module Data.Function.Compat.Repl -- | Reexports Prelude.Compat from a globally unique namespace. module Prelude.Compat.Repl -- | Miscellaneous information about the system environment. module System.Environment.Compat -- | Computation getArgs returns a list of the program's command -- line arguments (not including the program name). getArgs :: IO [String] -- | Computation getProgName returns the name of the program as it -- was invoked. -- -- However, this is hard-to-impossible to implement on some non-Unix -- OSes, so instead, for maximum portability, we just return the leafname -- of the program as invoked. Even then there are some differences -- between platforms: on Windows, for example, a program invoked as foo -- is probably really FOO.EXE, and that is what -- getProgName will return. getProgName :: IO String -- | Computation getEnv var returns the value of the -- environment variable var. For the inverse, the setEnv -- function can be used. -- -- This computation may fail with: -- --
-- setEnv name "" ---- -- has the same effect as -- --
-- unsetEnv name ---- -- If you'd like to be able to set environment variables to blank -- strings, use setEnv. -- -- Throws IOException if name is the empty string or -- contains an equals sign. setEnv :: String -> String -> IO () -- | unsetEnv name removes the specified environment variable from -- the environment of the current process. -- -- Throws IOException if name is the empty string or -- contains an equals sign. unsetEnv :: String -> IO () -- | withArgs args act - while executing action -- act, have getArgs return args. withArgs :: [String] -> IO a -> IO a -- | withProgName name act - while executing action -- act, have getProgName return name. withProgName :: String -> IO a -> IO a -- | getEnvironment retrieves the entire environment as a list of -- (key,value) pairs. -- -- If an environment entry does not contain an '=' character, -- the key is the whole entry and the value is the -- empty string. getEnvironment :: IO [(String, String)] -- | Reexports System.Environment.Compat from a globally unique -- namespace. module System.Environment.Compat.Repl module System.Exit.Compat -- | Write given error message to stderr and terminate with -- exitFailure. die :: String -> IO a -- | Reexports System.Exit.Compat from a globally unique namespace. module System.Exit.Compat.Repl module System.IO.Compat -- | The getContents' operation returns all user input as a single -- string, which is fully read before being returned (same as -- hGetContents' stdin). getContents' :: IO String -- | The hGetContents' operation reads all input on the given handle -- before returning it as a String and closing the handle. hGetContents' :: Handle -> IO String -- | The readFile' function reads a file and returns the contents of -- the file as a string. The file is fully read before being returned, as -- with getContents'. readFile' :: FilePath -> IO String -- | Reexports System.IO.Compat from a globally unique namespace. module System.IO.Compat.Repl module System.IO.Error.Compat -- | An error indicating that the operation failed because the resource -- vanished. See resourceVanishedErrorType. isResourceVanishedError :: IOError -> Bool -- | I/O error where the operation failed because the resource vanished. -- This happens when, for example, attempting to write to a closed socket -- or attempting to write to a named pipe that was deleted. resourceVanishedErrorType :: IOErrorType -- | I/O error where the operation failed because the resource vanished. -- See resourceVanishedErrorType. isResourceVanishedErrorType :: IOErrorType -> Bool -- | Reexports System.IO.Error.Compat from a globally unique -- namespace. module System.IO.Error.Compat.Repl module System.IO.Unsafe.Compat -- | A slightly faster version of fixIO that may not be safe to use -- with multiple threads. The unsafety arises when used like this: -- --
-- unsafeFixIO $ \r -> do -- forkIO (print r) -- return (...) ---- -- In this case, the child thread will receive a NonTermination -- exception instead of waiting for the value of r to be -- computed. unsafeFixIO :: (a -> IO a) -> IO a -- | This version of unsafePerformIO is more efficient because it -- omits the check that the IO is only being performed by a single -- thread. Hence, when you use unsafeDupablePerformIO, there is a -- possibility that the IO action may be performed multiple times (on a -- multiprocessor), and you should therefore ensure that it gives the -- same results each time. It may even happen that one of the duplicated -- IO actions is only run partially, and then interrupted in the middle -- without an exception being raised. Therefore, functions like -- bracket cannot be used safely within -- unsafeDupablePerformIO. unsafeDupablePerformIO :: IO a -> a -- | Reexports System.IO.Unsafe.Compat from a globally unique -- namespace. module System.IO.Unsafe.Compat.Repl module Text.Read.Compat -- | Parsing of Strings, producing values. -- -- Derived instances of Read make the following assumptions, which -- derived instances of Show obey: -- --
-- infixr 5 :^: -- data Tree a = Leaf a | Tree a :^: Tree a ---- -- the derived instance of Read in Haskell 2010 is equivalent to -- --
-- instance (Read a) => Read (Tree a) where
--
-- readsPrec d r = readParen (d > app_prec)
-- (\r -> [(Leaf m,t) |
-- ("Leaf",s) <- lex r,
-- (m,t) <- readsPrec (app_prec+1) s]) r
--
-- ++ readParen (d > up_prec)
-- (\r -> [(u:^:v,w) |
-- (u,s) <- readsPrec (up_prec+1) r,
-- (":^:",t) <- lex s,
-- (v,w) <- readsPrec (up_prec+1) t]) r
--
-- where app_prec = 10
-- up_prec = 5
--
--
-- Note that right-associativity of :^: is unused.
--
-- The derived instance in GHC is equivalent to
--
-- -- instance (Read a) => Read (Tree a) where -- -- readPrec = parens $ (prec app_prec $ do -- Ident "Leaf" <- lexP -- m <- step readPrec -- return (Leaf m)) -- -- +++ (prec up_prec $ do -- u <- step readPrec -- Symbol ":^:" <- lexP -- v <- step readPrec -- return (u :^: v)) -- -- where app_prec = 10 -- up_prec = 5 -- -- readListPrec = readListPrecDefault ---- -- Why do both readsPrec and readPrec exist, and why does -- GHC opt to implement readPrec in derived Read instances -- instead of readsPrec? The reason is that readsPrec is -- based on the ReadS type, and although ReadS is mentioned -- in the Haskell 2010 Report, it is not a very efficient parser data -- structure. -- -- readPrec, on the other hand, is based on a much more efficient -- ReadPrec datatype (a.k.a "new-style parsers"), but its -- definition relies on the use of the RankNTypes language -- extension. Therefore, readPrec (and its cousin, -- readListPrec) are marked as GHC-only. Nevertheless, it is -- recommended to use readPrec instead of readsPrec -- whenever possible for the efficiency improvements it brings. -- -- As mentioned above, derived Read instances in GHC will -- implement readPrec instead of readsPrec. The default -- implementations of readsPrec (and its cousin, readList) -- will simply use readPrec under the hood. If you are writing a -- Read instance by hand, it is recommended to write it like so: -- --
-- instance Read T where -- readPrec = ... -- readListPrec = readListPrecDefault --class Read a -- | attempts to parse a value from the front of the string, returning a -- list of (parsed value, remaining string) pairs. If there is no -- successful parse, the returned list is empty. -- -- Derived instances of Read and Show satisfy the -- following: -- -- -- -- That is, readsPrec parses the string produced by -- showsPrec, and delivers the value that showsPrec started -- with. readsPrec :: Read a => Int -> ReadS a -- | The method readList is provided to allow the programmer to give -- a specialised way of parsing lists of values. For example, this is -- used by the predefined Read instance of the Char type, -- where values of type String should be are expected to use -- double quotes, rather than square brackets. readList :: Read a => ReadS [a] -- | Proposed replacement for readsPrec using new-style parsers (GHC -- only). readPrec :: Read a => ReadPrec a -- | Proposed replacement for readList using new-style parsers (GHC -- only). The default definition uses readList. Instances that -- define readPrec should also define readListPrec as -- readListPrecDefault. readListPrec :: Read a => ReadPrec [a] -- | A parser for a type a, represented as a function that takes a -- String and returns a list of possible parses as -- (a,String) pairs. -- -- Note that this kind of backtracking parser is very inefficient; -- reading a large structure may be quite slow (cf ReadP). type ReadS a = String -> [(a, String)] -- | equivalent to readsPrec with a precedence of 0. reads :: Read a => ReadS a -- | The read function reads input from a string, which must be -- completely consumed by the input process. read fails with an -- error if the parse is unsuccessful, and it is therefore -- discouraged from being used in real applications. Use readMaybe -- or readEither for safe alternatives. -- --
-- >>> read "123" :: Int -- 123 ---- --
-- >>> read "hello" :: Int -- *** Exception: Prelude.read: no parse --read :: Read a => String -> a -- | readParen True p parses what p parses, -- but surrounded with parentheses. -- -- readParen False p parses what p -- parses, but optionally surrounded with parentheses. readParen :: Bool -> ReadS a -> ReadS a -- | The lex function reads a single lexeme from the input, -- discarding initial white space, and returning the characters that -- constitute the lexeme. If the input string contains only white space, -- lex returns a single successful `lexeme' consisting of the -- empty string. (Thus lex "" = [("","")].) If there is -- no legal lexeme at the beginning of the input string, lex fails -- (i.e. returns []). -- -- This lexer is not completely faithful to the Haskell lexical syntax in -- the following respects: -- --
-- >>> readEither "123" :: Either String Int -- Right 123 ---- --
-- >>> readEither "hello" :: Either String Int -- Left "Prelude.read: no parse" --readEither :: Read a => String -> Either String a -- | Parse a string using the Read instance. Succeeds if there is -- exactly one valid result. -- --
-- >>> readMaybe "123" :: Maybe Int -- Just 123 ---- --
-- >>> readMaybe "hello" :: Maybe Int -- Nothing --readMaybe :: Read a => String -> Maybe a -- | Reexports Text.Read.Compat from a globally unique namespace. module Text.Read.Compat.Repl module Text.Read.Lex.Compat readBinP :: (Eq a, Num a) => ReadP a -- | Reexports Text.Read.Lex.Compat from a globally unique -- namespace. module Text.Read.Lex.Compat.Repl module Type.Reflection.Compat -- | Use a TypeRep as Typeable evidence. withTypeable :: forall k (a :: k) (rep :: RuntimeRep) (r :: TYPE rep). TypeRep a -> (Typeable a => r) -> r -- | A explicitly bidirectional pattern synonym to construct a concrete -- representation of a type. -- -- As an expression: Constructs a singleton TypeRep a -- given a implicit 'Typeable a' constraint: -- --
-- TypeRep @a :: Typeable a => TypeRep a ---- -- As a pattern: Matches on an explicit TypeRep a witness -- bringing an implicit Typeable a constraint into scope. -- --
-- f :: TypeRep a -> ..
-- f TypeRep = {- Typeable a in scope -}
--
--
-- Since: 4.17.0.0
pattern TypeRep :: forall a. () => Typeable a => TypeRep a
-- | Type equality decision
--
-- Since: 4.19.0.0
decTypeRep :: forall k1 k2 (a :: k1) (b :: k2). TypeRep a -> TypeRep b -> Either ((a :~~: b) -> Void) (a :~~: b)
module Data.Typeable.Compat
-- | Extract a witness of heterogeneous equality of two types
--
-- Since: 4.18.0.0
heqT :: forall a b. (Typeable a, Typeable b) => Maybe (a :~~: b)
-- | Decide an equality of two types
--
-- Since: 4.19.0.0
decT :: forall a b. (Typeable a, Typeable b) => Either ((a :~: b) -> Void) (a :~: b)
-- | Decide heterogeneous equality of two types.
--
-- Since: 4.19.0.0
hdecT :: forall a b. (Typeable a, Typeable b) => Either ((a :~~: b) -> Void) (a :~~: b)
-- | Reexports Data.Typeable.Compat from a globally unique
-- namespace.
module Data.Typeable.Compat.Repl
-- | Reexports Type.Reflection.Compat from a globally unique
-- namespace.
module Type.Reflection.Compat.Repl