-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | An enhanced core prelude; a common foundation for alternate preludes. -- -- The premise of basic-prelude is that there are a lot of very -- commonly desired features missing from the standard Prelude, -- such as commonly used operators (<$> and -- >=>, for instance) and imports for common datatypes -- (e.g., ByteString and Vector). At the same time, -- there are lots of other components which are more debatable, such as -- providing polymorphic versions of common functions. -- -- So basic-prelude is intended to give a common foundation for -- a number of alternate preludes. The package provides two modules: -- CorePrelude provides the common ground for other preludes to -- build on top of, while BasicPrelude exports -- CorePrelude together with commonly used list functions to -- provide a drop-in replacement for the standard Prelude. -- -- Users wishing to have an improved Prelude can use -- BasicPrelude. Developers wishing to create a new prelude -- should use CorePrelude. @package basic-prelude @version 0.3.13 module CorePrelude -- | Application operator. This operator is redundant, since ordinary -- application (f x) means the same as (f $ x). -- However, $ has low, right-associative binding precedence, so it -- sometimes allows parentheses to be omitted; for example: -- --
-- f $ g $ h x = f (g (h x)) ---- -- It is also useful in higher-order situations, such as map -- ($ 0) xs, or zipWith ($) fs xs. ($) :: (a -> b) -> a -> b -- | Strict (call-by-value) application operator. It takes a function and -- an argument, evaluates the argument to weak head normal form (WHNF), -- then calls the function with that value. ($!) :: (a -> b) -> a -> b -- | Boolean "and" (&&) :: Bool -> Bool -> Bool -- | Boolean "or" (||) :: Bool -> Bool -> Bool -- | morphism composition (.) :: Category k cat => forall (b :: k) (c :: k) (a :: k). cat b c -> cat a b -> cat a c -- | Boolean "not" not :: Bool -> Bool -- | otherwise is defined as the value True. It helps to make -- guards more readable. eg. -- --
-- f x | x < 0 = ... -- | otherwise = ... --otherwise :: Bool -- | Extract the first component of a pair. fst :: (a, b) -> a -- | Extract the second component of a pair. snd :: (a, b) -> b -- | the identity morphism id :: Category k cat => forall (a :: k). cat a a -- | The maybe function takes a default value, a function, and a -- Maybe value. If the Maybe value is Nothing, the -- function returns the default value. Otherwise, it applies the function -- to the value inside the Just and returns the result. -- --
-- >>> maybe False odd (Just 3) -- True ---- --
-- >>> maybe False odd Nothing -- False ---- -- Read an integer from a string using readMaybe. If we succeed, -- return twice the integer; that is, apply (*2) to it. If -- instead we fail to parse an integer, return 0 by default: -- --
-- >>> import Text.Read ( readMaybe ) -- -- >>> maybe 0 (*2) (readMaybe "5") -- 10 -- -- >>> maybe 0 (*2) (readMaybe "") -- 0 ---- -- Apply show to a Maybe Int. If we have Just -- n, we want to show the underlying Int n. But if -- we have Nothing, we return the empty string instead of (for -- example) "Nothing": -- --
-- >>> maybe "" show (Just 5) -- "5" -- -- >>> maybe "" show Nothing -- "" --maybe :: b -> (a -> b) -> Maybe a -> b -- | Case analysis for the Either type. If the value is -- Left a, apply the first function to a; if it -- is Right b, apply the second function to b. -- --
-- >>> let s = Left "foo" :: Either String Int -- -- >>> let n = Right 3 :: Either String Int -- -- >>> either length (*2) s -- 3 -- -- >>> either length (*2) n -- 6 --either :: (a -> c) -> (b -> c) -> Either a b -> c -- | flip f takes its (first) two arguments in the reverse -- order of f. flip :: (a -> b -> c) -> b -> a -> c -- | Constant function. const :: a -> b -> a -- | error stops execution and displays an error message. error :: [Char] -> a putStr :: MonadIO m => Text -> m () putStrLn :: MonadIO m => Text -> m () print :: (MonadIO m, Show a) => a -> m () getArgs :: MonadIO m => m [Text] odd :: Integral a => a -> Bool even :: Integral a => a -> Bool -- | uncurry converts a curried function to a function on pairs. uncurry :: (a -> b -> c) -> (a, b) -> c -- | curry converts an uncurried function to a curried function. curry :: ((a, b) -> c) -> a -> b -> c -- | Swap the components of a pair. swap :: (a, b) -> (b, a) -- | until p f yields the result of applying f -- until p holds. until :: (a -> Bool) -> (a -> a) -> a -> a -- | asTypeOf is a type-restricted version of const. It is -- usually used as an infix operator, and its typing forces its first -- argument (which is usually overloaded) to have the same type as the -- second. asTypeOf :: a -> a -> a -- | A special case of error. It is expected that compilers will -- recognize this and insert error messages which are more appropriate to -- the context in which undefined appears. undefined :: a -- | The value of seq a b is bottom if a is bottom, and -- otherwise equal to b. seq is usually introduced to -- improve performance by avoiding unneeded laziness. -- -- A note on evaluation order: the expression seq a b does -- not guarantee that a will be evaluated before -- b. The only guarantee given by seq is that the both -- a and b will be evaluated before seq -- returns a value. In particular, this means that b may be -- evaluated before a. If you need to guarantee a specific order -- of evaluation, you must use the function pseq from the -- "parallel" package. seq :: a -> b -> b -- | The Ord class is used for totally ordered datatypes. -- -- Instances of Ord can be derived for any user-defined datatype -- whose constituent types are in Ord. The declared order of the -- constructors in the data declaration determines the ordering in -- derived Ord instances. The Ordering datatype allows a -- single comparison to determine the precise ordering of two objects. -- -- Minimal complete definition: either compare or <=. -- Using compare can be more efficient for complex types. class Eq a => Ord a compare :: Ord a => a -> a -> Ordering (<) :: Ord a => a -> a -> Bool (<=) :: Ord a => a -> a -> Bool (>) :: Ord a => a -> a -> Bool (>=) :: Ord a => a -> a -> Bool max :: Ord a => a -> a -> a min :: Ord a => a -> a -> a -- | The Eq class defines equality (==) and inequality -- (/=). All the basic datatypes exported by the Prelude -- are instances of Eq, and Eq may be derived for any -- datatype whose constituents are also instances of Eq. -- -- Minimal complete definition: either == or /=. class Eq a (==) :: Eq a => a -> a -> Bool (/=) :: Eq a => a -> a -> Bool -- | The Bounded class is used to name the upper and lower limits of -- a type. Ord is not a superclass of Bounded since types -- that are not totally ordered may also have upper and lower bounds. -- -- The Bounded class may be derived for any enumeration type; -- minBound is the first constructor listed in the data -- declaration and maxBound is the last. Bounded may also -- be derived for single-constructor datatypes whose constituent types -- are in Bounded. class Bounded a minBound :: Bounded a => a maxBound :: Bounded a => a -- | Class Enum defines operations on sequentially ordered types. -- -- The enumFrom... methods are used in Haskell's translation of -- arithmetic sequences. -- -- Instances of Enum may be derived for any enumeration type -- (types whose constructors have no fields). The nullary constructors -- are assumed to be numbered left-to-right by fromEnum from -- 0 through n-1. See Chapter 10 of the Haskell -- Report for more details. -- -- For any type that is an instance of class Bounded as well as -- Enum, the following should hold: -- --
-- enumFrom x = enumFromTo x maxBound -- enumFromThen x y = enumFromThenTo x y bound -- where -- bound | fromEnum y >= fromEnum x = maxBound -- | otherwise = minBound --class Enum a -- | the successor of a value. For numeric types, succ adds 1. succ :: Enum a => a -> a -- | the predecessor of a value. For numeric types, pred subtracts -- 1. pred :: Enum a => a -> a -- | Convert from an Int. toEnum :: Enum a => Int -> a -- | Convert to an Int. It is implementation-dependent what -- fromEnum returns when applied to a value that is too large to -- fit in an Int. fromEnum :: Enum a => a -> Int -- | Used in Haskell's translation of [n..]. enumFrom :: Enum a => a -> [a] -- | Used in Haskell's translation of [n,n'..]. enumFromThen :: Enum a => a -> a -> [a] -- | Used in Haskell's translation of [n..m]. enumFromTo :: Enum a => a -> a -> [a] -- | Used in Haskell's translation of [n,n'..m]. enumFromThenTo :: Enum a => a -> a -> a -> [a] -- | Conversion of values to readable Strings. -- -- Derived instances of Show have the following properties, which -- are compatible with derived instances of Read: -- --
-- infixr 5 :^: -- data Tree a = Leaf a | Tree a :^: Tree a ---- -- the derived instance of Show is equivalent to -- --
-- instance (Show a) => Show (Tree a) where -- -- showsPrec d (Leaf m) = showParen (d > app_prec) $ -- showString "Leaf " . showsPrec (app_prec+1) m -- where app_prec = 10 -- -- showsPrec d (u :^: v) = showParen (d > up_prec) $ -- showsPrec (up_prec+1) u . -- showString " :^: " . -- showsPrec (up_prec+1) v -- where up_prec = 5 ---- -- Note that right-associativity of :^: is ignored. For example, -- --
-- infixr 5 :^: -- data Tree a = Leaf a | Tree a :^: Tree a ---- -- the derived instance of Read in Haskell 2010 is equivalent to -- --
-- instance (Read a) => Read (Tree a) where
--
-- readsPrec d r = readParen (d > app_prec)
-- (\r -> [(Leaf m,t) |
-- ("Leaf",s) <- lex r,
-- (m,t) <- readsPrec (app_prec+1) s]) r
--
-- ++ readParen (d > up_prec)
-- (\r -> [(u:^:v,w) |
-- (u,s) <- readsPrec (up_prec+1) r,
-- (":^:",t) <- lex s,
-- (v,w) <- readsPrec (up_prec+1) t]) r
--
-- where app_prec = 10
-- up_prec = 5
--
--
-- Note that right-associativity of :^: is unused.
--
-- The derived instance in GHC is equivalent to
--
-- -- instance (Read a) => Read (Tree a) where -- -- readPrec = parens $ (prec app_prec $ do -- Ident "Leaf" <- lexP -- m <- step readPrec -- return (Leaf m)) -- -- +++ (prec up_prec $ do -- u <- step readPrec -- Symbol ":^:" <- lexP -- v <- step readPrec -- return (u :^: v)) -- -- where app_prec = 10 -- up_prec = 5 -- -- readListPrec = readListPrecDefault --class Read a -- | The Functor class is used for types that can be mapped over. -- Instances of Functor should satisfy the following laws: -- --
-- fmap id == id -- fmap (f . g) == fmap f . fmap g ---- -- The instances of Functor for lists, Maybe and IO -- satisfy these laws. class Functor (f :: * -> *) fmap :: Functor f => (a -> b) -> f a -> f b -- | Replace all locations in the input with the same value. The default -- definition is fmap . const, but this may be -- overridden with a more efficient version. (<$) :: Functor f => a -> f b -> f a -- | The Monad class defines the basic operations over a -- monad, a concept from a branch of mathematics known as -- category theory. From the perspective of a Haskell programmer, -- however, it is best to think of a monad as an abstract datatype -- of actions. Haskell's do expressions provide a convenient -- syntax for writing monadic expressions. -- -- Instances of Monad should satisfy the following laws: -- -- -- -- Furthermore, the Monad and Applicative operations should -- relate as follows: -- -- -- -- The above laws imply: -- -- -- -- and that pure and (<*>) satisfy the applicative -- functor laws. -- -- The instances of Monad for lists, Maybe and IO -- defined in the Prelude satisfy these laws. class Applicative m => Monad (m :: * -> *) -- | Sequentially compose two actions, passing any value produced by the -- first as an argument to the second. (>>=) :: Monad m => m a -> (a -> m b) -> m b -- | Sequentially compose two actions, discarding any value produced by the -- first, like sequencing operators (such as the semicolon) in imperative -- languages. (>>) :: Monad m => m a -> m b -> m b -- | Inject a value into the monadic type. return :: Monad m => a -> m a -- | Fail with a message. This operation is not part of the mathematical -- definition of a monad, but is invoked on pattern-match failure in a -- do expression. fail :: Monad m => String -> m a -- | Same as >>=, but with the arguments interchanged. (=<<) :: Monad m => (a -> m b) -> m a -> m b -- | Class for string-like datastructures; used by the overloaded string -- extension (-XOverloadedStrings in GHC). class IsString a fromString :: IsString a => String -> a -- | Basic numeric class. class Num a (+) :: Num a => a -> a -> a (-) :: Num a => a -> a -> a (*) :: Num a => a -> a -> a -- | Unary negation. negate :: Num a => a -> a -- | Absolute value. abs :: Num a => a -> a -- | Sign of a number. The functions abs and signum should -- satisfy the law: -- --
-- abs x * signum x == x ---- -- For real numbers, the signum is either -1 (negative), -- 0 (zero) or 1 (positive). signum :: Num a => a -> a -- | Conversion from an Integer. An integer literal represents the -- application of the function fromInteger to the appropriate -- value of type Integer, so such literals have type -- (Num a) => a. fromInteger :: Num a => Integer -> a class (Num a, Ord a) => Real a -- | the rational equivalent of its real argument with full precision toRational :: Real a => a -> Rational -- | Integral numbers, supporting integer division. class (Real a, Enum a) => Integral a -- | integer division truncated toward zero quot :: Integral a => a -> a -> a -- | integer remainder, satisfying -- --
-- (x `quot` y)*y + (x `rem` y) == x --rem :: Integral a => a -> a -> a -- | integer division truncated toward negative infinity div :: Integral a => a -> a -> a -- | integer modulus, satisfying -- --
-- (x `div` y)*y + (x `mod` y) == x --mod :: Integral a => a -> a -> a -- | simultaneous quot and rem quotRem :: Integral a => a -> a -> (a, a) -- | simultaneous div and mod divMod :: Integral a => a -> a -> (a, a) -- | conversion to Integer toInteger :: Integral a => a -> Integer -- | Fractional numbers, supporting real division. class Num a => Fractional a -- | fractional division (/) :: Fractional a => a -> a -> a -- | reciprocal fraction recip :: Fractional a => a -> a -- | Conversion from a Rational (that is Ratio -- Integer). A floating literal stands for an application of -- fromRational to a value of type Rational, so such -- literals have type (Fractional a) => a. fromRational :: Fractional a => Rational -> a -- | Trigonometric and hyperbolic functions and related functions. class Fractional a => Floating a pi :: Floating a => a exp :: Floating a => a -> a log :: Floating a => a -> a sqrt :: Floating a => a -> a (**) :: Floating a => a -> a -> a logBase :: Floating a => a -> a -> a sin :: Floating a => a -> a cos :: Floating a => a -> a tan :: Floating a => a -> a asin :: Floating a => a -> a acos :: Floating a => a -> a atan :: Floating a => a -> a sinh :: Floating a => a -> a cosh :: Floating a => a -> a tanh :: Floating a => a -> a asinh :: Floating a => a -> a acosh :: Floating a => a -> a atanh :: Floating a => a -> a -- | Extracting components of fractions. class (Real a, Fractional a) => RealFrac a -- | The function properFraction takes a real fractional number -- x and returns a pair (n,f) such that x = -- n+f, and: -- --
-- >>> let s = Left "foo" :: Either String Int -- -- >>> s -- Left "foo" -- -- >>> let n = Right 3 :: Either String Int -- -- >>> n -- Right 3 -- -- >>> :type s -- s :: Either String Int -- -- >>> :type n -- n :: Either String Int ---- -- The fmap from our Functor instance will ignore -- Left values, but will apply the supplied function to values -- contained in a Right: -- --
-- >>> let s = Left "foo" :: Either String Int -- -- >>> let n = Right 3 :: Either String Int -- -- >>> fmap (*2) s -- Left "foo" -- -- >>> fmap (*2) n -- Right 6 ---- -- The Monad instance for Either allows us to chain -- together multiple actions which may fail, and fail overall if any of -- the individual steps failed. First we'll write a function that can -- either parse an Int from a Char, or fail. -- --
-- >>> import Data.Char ( digitToInt, isDigit )
--
-- >>> :{
-- let parseEither :: Char -> Either String Int
-- parseEither c
-- | isDigit c = Right (digitToInt c)
-- | otherwise = Left "parse error"
--
-- >>> :}
--
--
-- The following should work, since both '1' and '2'
-- can be parsed as Ints.
--
--
-- >>> :{
-- let parseMultiple :: Either String Int
-- parseMultiple = do
-- x <- parseEither '1'
-- y <- parseEither '2'
-- return (x + y)
--
-- >>> :}
--
--
-- -- >>> parseMultiple -- Right 3 ---- -- But the following should fail overall, since the first operation where -- we attempt to parse 'm' as an Int will fail: -- --
-- >>> :{
-- let parseMultiple :: Either String Int
-- parseMultiple = do
-- x <- parseEither 'm'
-- y <- parseEither '2'
-- return (x + y)
--
-- >>> :}
--
--
-- -- >>> parseMultiple -- Left "parse error" --data Either a b :: * -> * -> * Left :: a -> Either a b Right :: b -> Either a b -- | A space-efficient representation of a Word8 vector, supporting -- many efficient operations. -- -- A ByteString contains 8-bit bytes, or by using the operations -- from Data.ByteString.Char8 it can be interpreted as containing -- 8-bit characters. data ByteString :: * type LByteString = ByteString -- | A space efficient, packed, unboxed Unicode text type. data Text :: * type LText = Text -- | A Map from keys k to values a. data Map k a :: * -> * -> * -- | A map from keys to values. A map cannot contain duplicate keys; each -- key can map to at most one value. data HashMap k v :: * -> * -> * -- | A map of integers to values a. data IntMap a :: * -> * -- | A set of values a. data Set a :: * -> * -- | A set of values. A set cannot contain duplicate values. data HashSet a :: * -> * -- | A set of integers. data IntSet :: * -- | General-purpose finite sequences. data Seq a :: * -> * -- | Boxed vectors, supporting efficient slicing. data Vector a :: * -> * type UVector = Vector class (Vector Vector a, MVector MVector a) => Unbox a type SVector = Vector -- | The member functions of this class facilitate writing values of -- primitive types to raw memory (which may have been allocated with the -- above mentioned routines) and reading values from blocks of raw -- memory. The class, furthermore, includes support for computing the -- storage requirements and alignment restrictions of storable types. -- -- Memory addresses are represented as values of type Ptr -- a, for some a which is an instance of class -- Storable. The type argument to Ptr helps provide some -- valuable type safety in FFI code (you can't mix pointers of different -- types without an explicit cast), while helping the Haskell type system -- figure out which marshalling method is needed for a given pointer. -- -- All marshalling between Haskell and a foreign language ultimately -- boils down to translating Haskell data structures into the binary -- representation of a corresponding data structure of the foreign -- language and vice versa. To code this marshalling in Haskell, it is -- necessary to manipulate primitive data types stored in unstructured -- memory blocks. The class Storable facilitates this manipulation -- on all types for which it is instantiated, which are the standard -- basic types of Haskell, the fixed size Int types -- (Int8, Int16, Int32, Int64), the fixed -- size Word types (Word8, Word16, Word32, -- Word64), StablePtr, all types from -- Foreign.C.Types, as well as Ptr. class Storable a -- | The class of types that can be converted to a hash value. -- -- Minimal implementation: hashWithSalt. class Hashable a -- | Return a hash value for the argument, using the given salt. -- -- The general contract of hashWithSalt is: -- --
mappend mempty x = x
mappend x mempty = x
mappend x (mappend y z) = mappend (mappend x y) z
mconcat = foldr mappend mempty
-- >>> import Text.Read ( readMaybe ) -- -- >>> let readMaybeInt = readMaybe :: String -> Maybe Int -- -- >>> mapMaybe readMaybeInt ["1", "Foo", "3"] -- [1,3] -- -- >>> catMaybes $ map readMaybeInt ["1", "Foo", "3"] -- [1,3] ---- -- If we map the Just constructor, the entire list should be -- returned: -- --
-- >>> mapMaybe Just [1,2,3] -- [1,2,3] --mapMaybe :: (a -> Maybe b) -> [a] -> [b] -- | The catMaybes function takes a list of Maybes and -- returns a list of all the Just values. -- --
-- >>> catMaybes [Just 1, Nothing, Just 3] -- [1,3] ---- -- When constructing a list of Maybe values, catMaybes can -- be used to return all of the "success" results (if the list is the -- result of a map, then mapMaybe would be more -- appropriate): -- --
-- >>> import Text.Read ( readMaybe ) -- -- >>> [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ] -- [Just 1,Nothing,Just 3] -- -- >>> catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ] -- [1,3] --catMaybes :: [Maybe a] -> [a] -- | The fromMaybe function takes a default value and and -- Maybe value. If the Maybe is Nothing, it returns -- the default values; otherwise, it returns the value contained in the -- Maybe. -- --
-- >>> fromMaybe "" (Just "Hello, World!") -- "Hello, World!" ---- --
-- >>> fromMaybe "" Nothing -- "" ---- -- Read an integer from a string using readMaybe. If we fail to -- parse an integer, we want to return 0 by default: -- --
-- >>> import Text.Read ( readMaybe ) -- -- >>> fromMaybe 0 (readMaybe "5") -- 5 -- -- >>> fromMaybe 0 (readMaybe "") -- 0 --fromMaybe :: a -> Maybe a -> a -- | The isJust function returns True iff its argument is of -- the form Just _. -- --
-- >>> isJust (Just 3) -- True ---- --
-- >>> isJust (Just ()) -- True ---- --
-- >>> isJust Nothing -- False ---- -- Only the outer constructor is taken into consideration: -- --
-- >>> isJust (Just Nothing) -- True --isJust :: Maybe a -> Bool -- | The isNothing function returns True iff its argument is -- Nothing. -- --
-- >>> isNothing (Just 3) -- False ---- --
-- >>> isNothing (Just ()) -- False ---- --
-- >>> isNothing Nothing -- True ---- -- Only the outer constructor is taken into consideration: -- --
-- >>> isNothing (Just Nothing) -- False --isNothing :: Maybe a -> Bool -- | The listToMaybe function returns Nothing on an empty -- list or Just a where a is the first element -- of the list. -- --
-- >>> listToMaybe [] -- Nothing ---- --
-- >>> listToMaybe [9] -- Just 9 ---- --
-- >>> listToMaybe [1,2,3] -- Just 1 ---- -- Composing maybeToList with listToMaybe should be the -- identity on singleton/empty lists: -- --
-- >>> maybeToList $ listToMaybe [5] -- [5] -- -- >>> maybeToList $ listToMaybe [] -- [] ---- -- But not on lists with more than one element: -- --
-- >>> maybeToList $ listToMaybe [1,2,3] -- [1] --listToMaybe :: [a] -> Maybe a -- | The maybeToList function returns an empty list when given -- Nothing or a singleton list when not given Nothing. -- --
-- >>> maybeToList (Just 7) -- [7] ---- --
-- >>> maybeToList Nothing -- [] ---- -- One can use maybeToList to avoid pattern matching when combined -- with a function that (safely) works on lists: -- --
-- >>> import Text.Read ( readMaybe ) -- -- >>> sum $ maybeToList (readMaybe "3") -- 3 -- -- >>> sum $ maybeToList (readMaybe "") -- 0 --maybeToList :: Maybe a -> [a] -- | Partitions a list of Either into two lists. All the Left -- elements are extracted, in order, to the first component of the -- output. Similarly the Right elements are extracted to the -- second component of the output. -- --
-- >>> let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ] -- -- >>> partitionEithers list -- (["foo","bar","baz"],[3,7]) ---- -- The pair returned by partitionEithers x should be the -- same pair as (lefts x, rights x): -- --
-- >>> let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ] -- -- >>> partitionEithers list == (lefts list, rights list) -- True --partitionEithers :: [Either a b] -> ([a], [b]) -- | Extracts from a list of Either all the Left elements. -- All the Left elements are extracted in order. -- --
-- >>> let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ] -- -- >>> lefts list -- ["foo","bar","baz"] --lefts :: [Either a b] -> [a] -- | Extracts from a list of Either all the Right elements. -- All the Right elements are extracted in order. -- --
-- >>> let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ] -- -- >>> rights list -- [3,7] --rights :: [Either a b] -> [b] -- | (*) `on` f = \x y -> f x * f y. -- -- Typical usage: sortBy (compare `on` -- fst). -- -- Algebraic properties: -- --
((*) `on` f) `on` g = (*) `on` (f . g)
flip on f . flip on g = flip on (g . -- f)
-- comparing p x y = compare (p x) (p y) ---- -- Useful combinator for use in conjunction with the xxxBy -- family of functions from Data.List, for example: -- --
-- ... sortBy (comparing fst) ... --comparing :: Ord a => (b -> a) -> b -> b -> Ordering equating :: Eq a => (b -> a) -> b -> b -> Bool -- | The Down type allows you to reverse sort order conveniently. A -- value of type Down a contains a value of type -- a (represented as Down a). If a has -- an Ord instance associated with it then comparing two -- values thus wrapped will give you the opposite of their normal sort -- order. This is particularly useful when sorting in generalised list -- comprehensions, as in: then sortWith by Down x -- -- Provides Show and Read instances (since: -- 4.7.0.0). newtype Down a :: * -> * Down :: a -> Down a -- | A functor with application, providing operations to -- --
pure id <*> -- v = v
pure (.) <*> u -- <*> v <*> w = u <*> (v -- <*> w)
pure f <*> -- pure x = pure (f x)
u <*> pure y = -- pure ($ y) <*> u
-- >>> show <$> Nothing -- Nothing -- -- >>> show <$> Just 3 -- Just "3" ---- -- Convert from an Either Int Int to -- an Either Int String using -- show: -- --
-- >>> show <$> Left 17 -- Left 17 -- -- >>> show <$> Right 17 -- Right "17" ---- -- Double each element of a list: -- --
-- >>> (*2) <$> [1,2,3] -- [2,4,6] ---- -- Apply even to the second element of a pair: -- --
-- >>> even <$> (2,2) -- (2,True) --(<$>) :: Functor f => (a -> b) -> f a -> f b -- | An associative binary operation (<|>) :: Alternative f => forall a. f a -> f a -> f a -- | Left-to-right Kleisli composition of monads. (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c -- | Lift a computation from the argument monad to the constructed monad. lift :: MonadTrans t => forall (m :: * -> *) a. Monad m => m a -> t m a -- | Monads in which IO computations may be embedded. Any monad -- built by applying a sequence of monad transformers to the IO -- monad will be an instance of this class. -- -- Instances should satisfy the following laws, which state that -- liftIO is a transformer of monads: -- -- class Monad m => MonadIO (m :: * -> *) -- | Lift a computation from the IO monad. liftIO :: MonadIO m => IO a -> m a -- | Lift a computation from the IO monad. liftIO :: MonadIO m => forall a. IO a -> m a -- | Any type that you wish to throw or catch as an exception must be an -- instance of the Exception class. The simplest case is a new -- exception type directly below the root: -- --
-- data MyException = ThisException | ThatException -- deriving (Show, Typeable) -- -- instance Exception MyException ---- -- The default method definitions in the Exception class do what -- we need in this case. You can now throw and catch -- ThisException and ThatException as exceptions: -- --
-- *Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException))
-- Caught ThisException
--
--
-- In more complicated examples, you may wish to define a whole hierarchy
-- of exceptions:
--
-- -- --------------------------------------------------------------------- -- -- Make the root exception type for all the exceptions in a compiler -- -- data SomeCompilerException = forall e . Exception e => SomeCompilerException e -- deriving Typeable -- -- instance Show SomeCompilerException where -- show (SomeCompilerException e) = show e -- -- instance Exception SomeCompilerException -- -- compilerExceptionToException :: Exception e => e -> SomeException -- compilerExceptionToException = toException . SomeCompilerException -- -- compilerExceptionFromException :: Exception e => SomeException -> Maybe e -- compilerExceptionFromException x = do -- SomeCompilerException a <- fromException x -- cast a -- -- --------------------------------------------------------------------- -- -- Make a subhierarchy for exceptions in the frontend of the compiler -- -- data SomeFrontendException = forall e . Exception e => SomeFrontendException e -- deriving Typeable -- -- instance Show SomeFrontendException where -- show (SomeFrontendException e) = show e -- -- instance Exception SomeFrontendException where -- toException = compilerExceptionToException -- fromException = compilerExceptionFromException -- -- frontendExceptionToException :: Exception e => e -> SomeException -- frontendExceptionToException = toException . SomeFrontendException -- -- frontendExceptionFromException :: Exception e => SomeException -> Maybe e -- frontendExceptionFromException x = do -- SomeFrontendException a <- fromException x -- cast a -- -- --------------------------------------------------------------------- -- -- Make an exception type for a particular frontend compiler exception -- -- data MismatchedParentheses = MismatchedParentheses -- deriving (Typeable, Show) -- -- instance Exception MismatchedParentheses where -- toException = frontendExceptionToException -- fromException = frontendExceptionFromException ---- -- We can now catch a MismatchedParentheses exception as -- MismatchedParentheses, SomeFrontendException or -- SomeCompilerException, but not other types, e.g. -- IOException: -- --
-- *Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses))
-- Caught MismatchedParentheses
-- *Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException))
-- Caught MismatchedParentheses
-- *Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException))
-- Caught MismatchedParentheses
-- *Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: IOException))
-- *** Exception: MismatchedParentheses
--
class (Typeable * e, Show e) => Exception e
toException :: Exception e => e -> SomeException
fromException :: Exception e => SomeException -> Maybe e
-- | Render this exception value in a human-friendly manner.
--
-- Default implementation: show.
displayException :: Exception e => e -> String
-- | The class Typeable allows a concrete representation of a type
-- to be calculated.
class Typeable (a :: k)
-- | The SomeException type is the root of the exception type
-- hierarchy. When an exception of type e is thrown, behind the
-- scenes it is encapsulated in a SomeException.
data SomeException :: *
-- | Exceptions that occur in the IO monad. An
-- IOException records a more specific error type, a descriptive
-- string and maybe the handle that was used when the error was flagged.
data IOException :: *
-- | Generalized version of throwIO.
throwIO :: (MonadBase IO m, Exception e) => e -> m a
-- | Generalized version of try.
--
-- Note, when the given computation throws an exception any monadic side
-- effects in m will be discarded.
try :: (MonadBaseControl IO m, Exception e) => m a -> m (Either e a)
-- | Generalized version of tryJust.
--
-- Note, when the given computation throws an exception any monadic side
-- effects in m will be discarded.
tryJust :: (MonadBaseControl IO m, Exception e) => (e -> Maybe b) -> m a -> m (Either b a)
-- | Generalized version of catch.
--
-- Note, when the given computation throws an exception any monadic side
-- effects in m will be discarded.
catch :: (MonadBaseControl IO m, Exception e) => m a -> (e -> m a) -> m a
-- | Generalized version of catchJust.
--
-- Note, when the given computation throws an exception any monadic side
-- effects in m will be discarded.
catchJust :: (MonadBaseControl IO m, Exception e) => (e -> Maybe b) -> m a -> (b -> m a) -> m a
-- | Generalized version of handle.
--
-- Note, when the given computation throws an exception any monadic side
-- effects in m will be discarded.
handle :: (MonadBaseControl IO m, Exception e) => (e -> m a) -> m a -> m a
-- | Generalized version of handleJust.
--
-- Note, when the given computation throws an exception any monadic side
-- effects in m will be discarded.
handleJust :: (MonadBaseControl IO m, Exception e) => (e -> Maybe b) -> (b -> m a) -> m a -> m a
-- | Generalized version of bracket.
--
-- Note:
--
-- -- liftBaseOp (bracket acquire release) --bracket :: MonadBaseControl IO m => m a -> (a -> m b) -> (a -> m c) -> m c -- | Generalized version of bracket_. -- -- Note any monadic side effects in m of both the -- "acquire" and "release" computations will be discarded. To keep the -- monadic side effects of the "acquire" computation, use bracket -- with constant functions instead. -- -- Note that when your acquire and release computations -- are of type IO it will be more efficient to write: -- --
-- liftBaseOp_ (bracket_ acquire release) --bracket_ :: MonadBaseControl IO m => m a -> m b -> m c -> m c -- | Generalized version of bracketOnError. -- -- Note: -- --
-- liftBaseOp (bracketOnError acquire release) --bracketOnError :: MonadBaseControl IO m => m a -> (a -> m b) -> (a -> m c) -> m c -- | Generalized version of onException. -- -- Note, any monadic side effects in m of the "afterward" -- computation will be discarded. onException :: MonadBaseControl IO m => m a -> m b -> m a -- | Generalized version of finally. -- -- Note, any monadic side effects in m of the "afterward" -- computation will be discarded. finally :: MonadBaseControl IO m => m a -> m b -> m a -- | Generalized version of mask. mask :: MonadBaseControl IO m => ((forall a. m a -> m a) -> m b) -> m b -- | Generalized version of mask_. mask_ :: MonadBaseControl IO m => m a -> m a -- | Generalized version of uninterruptibleMask. uninterruptibleMask :: MonadBaseControl IO m => ((forall a. m a -> m a) -> m b) -> m b -- | Generalized version of uninterruptibleMask_. uninterruptibleMask_ :: MonadBaseControl IO m => m a -> m a data FilePath :: * -- | An alias for append. (>) :: FilePath -> FilePath -> FilePath -- | An alias for addExtension. (<.>) :: FilePath -> Text -> FilePath -- | Get whether a FilePath’s last extension is the predicate. hasExtension :: FilePath -> Text -> Bool -- | Retrieve a FilePath’s basename component. -- --
-- basename "foo/bar.txt" == "bar" --basename :: FilePath -> FilePath -- | Retrieve a FilePath’s filename component. -- --
-- filename "foo/bar.txt" == "bar.txt" --filename :: FilePath -> FilePath -- | Retrieves the FilePath’s directory. If the path is already a -- directory, it is returned unchanged. directory :: FilePath -> FilePath -- | A String is a list of characters. String constants in Haskell -- are values of type String. type String = [Char] -- | Like hashWithSalt, but no salt is used. The default -- implementation uses hashWithSalt with some default salt. -- Instances might want to implement this method to provide a more -- efficient implementation than the default implementation. hash :: Hashable a => a -> Int -- | Return a hash value for the argument, using the given salt. -- -- The general contract of hashWithSalt is: -- --
-- map = fmap --map :: (Functor f) => (a -> b) -> f a -> f b -- |
-- empty = mempty --empty :: Monoid w => w -- |
-- (++) = mappend --(++) :: Monoid w => w -> w -> w -- |
-- concat = mconcat --concat :: Monoid w => [w] -> w -- |
-- intercalate = mconcat .: intersperse --intercalate :: Monoid w => w -> [w] -> w -- | Compute the sum of a finite list of numbers. sum :: Num a => [a] -> a -- | Compute the product of a finite list of numbers. product :: Num a => [a] -> a -- | Convert a value to readable Text show :: Show a => a -> Text -- | Convert a value to readable IsString -- -- Since 0.3.12 fromShow :: (Show a, IsString b) => a -> b -- | Parse Text to a value read :: Read a => Text -> a -- | The readIO function is similar to read except that it signals parse -- failure to the IO monad instead of terminating the program. readIO :: Read a => Text -> IO a -- | Read a file and return the contents of the file as Text. The entire -- file is read strictly. readFile :: FilePath -> IO Text -- | Write Text to a file. The file is truncated to zero length before -- writing begins. writeFile :: FilePath -> Text -> IO () -- | Write Text to the end of a file. appendFile :: FilePath -> Text -> IO () -- | O(n) Breaks a Text up into a list of Texts at -- newline Chars. The resulting strings do not contain newlines. lines :: Text -> [Text] -- | O(n) Breaks a Text up into a list of words, delimited by -- Chars representing white space. words :: Text -> [Text] -- | O(n) Joins lines, after appending a terminating newline to -- each. unlines :: [Text] -> Text -- | O(n) Joins words using single space characters. unwords :: [Text] -> Text textToString :: Text -> String ltextToString :: LText -> String -- | This function assumes file paths are encoded in UTF8. If it cannot -- decode the FilePath, the result is just an approximation. -- -- Since 0.3.13 fpToText :: FilePath -> Text -- | Since 0.3.13 fpFromText :: Text -> FilePath -- | Since 0.3.13 fpToString :: FilePath -> String -- | Encode text using UTF-8 encoding. encodeUtf8 :: Text -> ByteString -- | Note that this is not the standard -- Data.Text.Encoding.decodeUtf8. That function will throw -- impure exceptions on any decoding errors. This function instead uses -- decodeLenient. decodeUtf8 :: ByteString -> Text -- | Read a single line of user input from stdin. getLine :: IO Text -- | Lazily read all user input on stdin as a single string. getContents :: IO Text -- | The interact function takes a function of type Text -> -- Text as its argument. The entire input from the standard input -- device is passed (lazily) to this function as its argument, and the -- resulting string is output on the standard output device. interact :: (Text -> Text) -> IO () -- | gcd x y is the non-negative factor of both x -- and y of which every common factor of x and -- y is also a factor; for example gcd 4 2 = 2, -- gcd (-4) 6 = 2, gcd 0 4 = 4. -- gcd 0 0 = 0. (That is, the common divisor -- that is "greatest" in the divisibility preordering.) -- -- Note: Since for signed fixed-width integer types, abs -- minBound < 0, the result may be negative if one of the -- arguments is minBound (and necessarily is if the other -- is 0 or minBound) for such types. gcd :: Integral a => a -> a -> a -- | lcm x y is the smallest positive integer that both -- x and y divide. lcm :: Integral a => a -> a -> a -- | The shows functions return a function that prepends the -- output String to an existing String. This allows -- constant-time concatenation of results using function composition. type ShowS = String -> String -- | Convert a value to a readable String. -- -- showsPrec should satisfy the law -- --
-- showsPrec d x r ++ s == showsPrec d x (r ++ s) ---- -- Derived instances of Read and Show satisfy the -- following: -- -- -- -- That is, readsPrec parses the string produced by -- showsPrec, and delivers the value that showsPrec started -- with. showsPrec :: Show a => Int -> a -> ShowS -- | The method showList is provided to allow the programmer to give -- a specialised way of showing lists of values. For example, this is -- used by the predefined Show instance of the Char type, -- where values of type String should be shown in double quotes, -- rather than between square brackets. showList :: Show a => [a] -> ShowS -- | equivalent to showsPrec with a precedence of 0. shows :: Show a => a -> ShowS -- | utility function converting a Char to a show function that -- simply prepends the character unchanged. showChar :: Char -> ShowS -- | utility function converting a String to a show function that -- simply prepends the string unchanged. showString :: String -> ShowS -- | utility function that surrounds the inner show function with -- parentheses when the Bool parameter is True. showParen :: Bool -> ShowS -> ShowS -- | A parser for a type a, represented as a function that takes a -- String and returns a list of possible parses as -- (a,String) pairs. -- -- Note that this kind of backtracking parser is very inefficient; -- reading a large structure may be quite slow (cf ReadP). type ReadS a = String -> [(a, String)] -- | attempts to parse a value from the front of the string, returning a -- list of (parsed value, remaining string) pairs. If there is no -- successful parse, the returned list is empty. -- -- Derived instances of Read and Show satisfy the -- following: -- -- -- -- That is, readsPrec parses the string produced by -- showsPrec, and delivers the value that showsPrec started -- with. readsPrec :: Read a => Int -> ReadS a -- | The method readList is provided to allow the programmer to give -- a specialised way of parsing lists of values. For example, this is -- used by the predefined Read instance of the Char type, -- where values of type String should be are expected to use -- double quotes, rather than square brackets. readList :: Read a => ReadS [a] -- | equivalent to readsPrec with a precedence of 0. reads :: Read a => ReadS a -- | readParen True p parses what p parses, -- but surrounded with parentheses. -- -- readParen False p parses what p -- parses, but optionally surrounded with parentheses. readParen :: Bool -> ReadS a -> ReadS a -- | The lex function reads a single lexeme from the input, -- discarding initial white space, and returning the characters that -- constitute the lexeme. If the input string contains only white space, -- lex returns a single successful `lexeme' consisting of the -- empty string. (Thus lex "" = [("","")].) If there is -- no legal lexeme at the beginning of the input string, lex fails -- (i.e. returns []). -- -- This lexer is not completely faithful to the Haskell lexical syntax in -- the following respects: -- --