/* * Copyright 2016 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef wasm_ir_properties_h #define wasm_ir_properties_h #include "ir/bits.h" #include "ir/effects.h" #include "wasm.h" namespace wasm { namespace Properties { inline bool emitsBoolean(Expression* curr) { if (auto* unary = curr->dynCast()) { return unary->isRelational(); } else if (auto* binary = curr->dynCast()) { return binary->isRelational(); } return false; } inline bool isSymmetric(Binary* binary) { switch (binary->op) { case AddInt32: case MulInt32: case AndInt32: case OrInt32: case XorInt32: case EqInt32: case NeInt32: case AddInt64: case MulInt64: case AndInt64: case OrInt64: case XorInt64: case EqInt64: case NeInt64: case EqFloat32: case NeFloat32: case EqFloat64: case NeFloat64: return true; default: return false; } } inline bool isControlFlowStructure(Expression* curr) { return curr->is() || curr->is() || curr->is() || curr->is(); } // Check if an expression is a control flow construct with a name, // which implies it may have breaks to it. inline bool isNamedControlFlow(Expression* curr) { if (auto* block = curr->dynCast()) { return block->name.is(); } else if (auto* loop = curr->dynCast()) { return loop->name.is(); } return false; } inline bool isSingleConstantExpression(const Expression* curr) { return curr->is() || curr->is() || curr->is() || (curr->is() && curr->cast()->value->is()); } inline bool isConstantExpression(const Expression* curr) { if (isSingleConstantExpression(curr)) { return true; } if (auto* tuple = curr->dynCast()) { for (auto* op : tuple->operands) { if (!isSingleConstantExpression(op)) { return false; } } return true; } return false; } inline Literal getLiteral(const Expression* curr) { if (auto* c = curr->dynCast()) { return c->value; } else if (auto* n = curr->dynCast()) { return Literal(n->type); } else if (auto* r = curr->dynCast()) { return Literal(r->func); } else if (auto* i = curr->dynCast()) { if (auto* c = i->value->dynCast()) { return Literal::makeI31(c->value.geti32()); } } WASM_UNREACHABLE("non-constant expression"); } inline Literals getLiterals(const Expression* curr) { if (isSingleConstantExpression(curr)) { return {getLiteral(curr)}; } else if (auto* tuple = curr->dynCast()) { Literals literals; for (auto* op : tuple->operands) { literals.push_back(getLiteral(op)); } return literals; } else { WASM_UNREACHABLE("non-constant expression"); } } // Check if an expression is a sign-extend, and if so, returns the value // that is extended, otherwise nullptr inline Expression* getSignExtValue(Expression* curr) { if (auto* outer = curr->dynCast()) { if (outer->op == ShrSInt32) { if (auto* outerConst = outer->right->dynCast()) { if (outerConst->value.geti32() != 0) { if (auto* inner = outer->left->dynCast()) { if (inner->op == ShlInt32) { if (auto* innerConst = inner->right->dynCast()) { if (outerConst->value == innerConst->value) { return inner->left; } } } } } } } } return nullptr; } // gets the size of the sign-extended value inline Index getSignExtBits(Expression* curr) { return 32 - Bits::getEffectiveShifts(curr->cast()->right); } // Check if an expression is almost a sign-extend: perhaps the inner shift // is too large. We can split the shifts in that case, which is sometimes // useful (e.g. if we can remove the signext) inline Expression* getAlmostSignExt(Expression* curr) { if (auto* outer = curr->dynCast()) { if (outer->op == ShrSInt32) { if (auto* outerConst = outer->right->dynCast()) { if (outerConst->value.geti32() != 0) { if (auto* inner = outer->left->dynCast()) { if (inner->op == ShlInt32) { if (auto* innerConst = inner->right->dynCast()) { if (Bits::getEffectiveShifts(outerConst) <= Bits::getEffectiveShifts(innerConst)) { return inner->left; } } } } } } } } return nullptr; } // gets the size of the almost sign-extended value, as well as the // extra shifts, if any inline Index getAlmostSignExtBits(Expression* curr, Index& extraShifts) { extraShifts = Bits::getEffectiveShifts( curr->cast()->left->cast()->right) - Bits::getEffectiveShifts(curr->cast()->right); return getSignExtBits(curr); } // Check if an expression is a zero-extend, and if so, returns the value // that is extended, otherwise nullptr inline Expression* getZeroExtValue(Expression* curr) { if (auto* binary = curr->dynCast()) { if (binary->op == AndInt32) { if (auto* c = binary->right->dynCast()) { if (Bits::getMaskedBits(c->value.geti32())) { return binary->right; } } } } return nullptr; } // gets the size of the sign-extended value inline Index getZeroExtBits(Expression* curr) { return Bits::getMaskedBits( curr->cast()->right->cast()->value.geti32()); } // Returns a falling-through value, that is, it looks through a local.tee // and other operations that receive a value and let it flow through them. If // there is no value falling through, returns the node itself (as that is the // value that trivially falls through, with 0 steps in the middle). inline Expression* getFallthrough(Expression* curr, const PassOptions& passOptions, FeatureSet features) { // If the current node is unreachable, there is no value // falling through. if (curr->type == Type::unreachable) { return curr; } if (auto* set = curr->dynCast()) { if (set->isTee()) { return getFallthrough(set->value, passOptions, features); } } else if (auto* block = curr->dynCast()) { // if no name, we can't be broken to, and then can look at the fallthrough if (!block->name.is() && block->list.size() > 0) { return getFallthrough(block->list.back(), passOptions, features); } } else if (auto* loop = curr->dynCast()) { return getFallthrough(loop->body, passOptions, features); } else if (auto* iff = curr->dynCast()) { if (iff->ifFalse) { // Perhaps just one of the two actually returns. if (iff->ifTrue->type == Type::unreachable) { return getFallthrough(iff->ifFalse, passOptions, features); } else if (iff->ifFalse->type == Type::unreachable) { return getFallthrough(iff->ifTrue, passOptions, features); } } } else if (auto* br = curr->dynCast()) { if (br->condition && br->value) { return getFallthrough(br->value, passOptions, features); } } else if (auto* tryy = curr->dynCast()) { if (!EffectAnalyzer(passOptions, features, tryy->body).throws) { return getFallthrough(tryy->body, passOptions, features); } } return curr; } // Returns whether the resulting value here must fall through without being // modified. For example, a tee always does so. That is, this returns false if // and only if the return value may have some computation performed on it to // change it from the inputs the instruction receives. // This differs from getFallthrough() which returns a single value that falls // through - here if more than one value can fall through, like in if-else, // we can return true. That is, there we care about a value falling through and // for us to get that actual value to look at; here we just care whether the // value falls through without being changed, even if it might be one of // several options. inline bool isResultFallthrough(Expression* curr) { // Note that we don't check if there is a return value here; the node may be // unreachable, for example, but then there is no meaningful answer to give // anyhow. return curr->is() || curr->is() || curr->is() || curr->is() || curr->is() || curr->is