#include "blake3_impl.h" #include #define DEGREE 8 TARGET_AVX2 INLINE __m256i loadu(const uint8_t src[32]) { return _mm256_loadu_si256((const __m256i *)src); } TARGET_AVX2 INLINE void storeu(__m256i src, uint8_t dest[16]) { _mm256_storeu_si256((__m256i *)dest, src); } TARGET_AVX2 INLINE __m256i addv(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); } // Note that clang-format doesn't like the name "xor" for some reason. TARGET_AVX2 INLINE __m256i xorv(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); } TARGET_AVX2 INLINE __m256i set1(uint32_t x) { return _mm256_set1_epi32((int32_t)x); } TARGET_AVX2 INLINE __m256i rot16(__m256i x) { return _mm256_shuffle_epi8( x, _mm256_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2, 13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2)); } TARGET_AVX2 INLINE __m256i rot12(__m256i x) { return _mm256_or_si256(_mm256_srli_epi32(x, 12), _mm256_slli_epi32(x, 32 - 12)); } TARGET_AVX2 INLINE __m256i rot8(__m256i x) { return _mm256_shuffle_epi8( x, _mm256_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1, 12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1)); } TARGET_AVX2 INLINE __m256i rot7(__m256i x) { return _mm256_or_si256(_mm256_srli_epi32(x, 7), _mm256_slli_epi32(x, 32 - 7)); } TARGET_AVX2 INLINE void round_fn(__m256i v[16], __m256i m[16], size_t r) { v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); v[0] = addv(v[0], v[4]); v[1] = addv(v[1], v[5]); v[2] = addv(v[2], v[6]); v[3] = addv(v[3], v[7]); v[12] = xorv(v[12], v[0]); v[13] = xorv(v[13], v[1]); v[14] = xorv(v[14], v[2]); v[15] = xorv(v[15], v[3]); v[12] = rot16(v[12]); v[13] = rot16(v[13]); v[14] = rot16(v[14]); v[15] = rot16(v[15]); v[8] = addv(v[8], v[12]); v[9] = addv(v[9], v[13]); v[10] = addv(v[10], v[14]); v[11] = addv(v[11], v[15]); v[4] = xorv(v[4], v[8]); v[5] = xorv(v[5], v[9]); v[6] = xorv(v[6], v[10]); v[7] = xorv(v[7], v[11]); v[4] = rot12(v[4]); v[5] = rot12(v[5]); v[6] = rot12(v[6]); v[7] = rot12(v[7]); v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); v[0] = addv(v[0], v[4]); v[1] = addv(v[1], v[5]); v[2] = addv(v[2], v[6]); v[3] = addv(v[3], v[7]); v[12] = xorv(v[12], v[0]); v[13] = xorv(v[13], v[1]); v[14] = xorv(v[14], v[2]); v[15] = xorv(v[15], v[3]); v[12] = rot8(v[12]); v[13] = rot8(v[13]); v[14] = rot8(v[14]); v[15] = rot8(v[15]); v[8] = addv(v[8], v[12]); v[9] = addv(v[9], v[13]); v[10] = addv(v[10], v[14]); v[11] = addv(v[11], v[15]); v[4] = xorv(v[4], v[8]); v[5] = xorv(v[5], v[9]); v[6] = xorv(v[6], v[10]); v[7] = xorv(v[7], v[11]); v[4] = rot7(v[4]); v[5] = rot7(v[5]); v[6] = rot7(v[6]); v[7] = rot7(v[7]); v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); v[0] = addv(v[0], v[5]); v[1] = addv(v[1], v[6]); v[2] = addv(v[2], v[7]); v[3] = addv(v[3], v[4]); v[15] = xorv(v[15], v[0]); v[12] = xorv(v[12], v[1]); v[13] = xorv(v[13], v[2]); v[14] = xorv(v[14], v[3]); v[15] = rot16(v[15]); v[12] = rot16(v[12]); v[13] = rot16(v[13]); v[14] = rot16(v[14]); v[10] = addv(v[10], v[15]); v[11] = addv(v[11], v[12]); v[8] = addv(v[8], v[13]); v[9] = addv(v[9], v[14]); v[5] = xorv(v[5], v[10]); v[6] = xorv(v[6], v[11]); v[7] = xorv(v[7], v[8]); v[4] = xorv(v[4], v[9]); v[5] = rot12(v[5]); v[6] = rot12(v[6]); v[7] = rot12(v[7]); v[4] = rot12(v[4]); v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); v[0] = addv(v[0], v[5]); v[1] = addv(v[1], v[6]); v[2] = addv(v[2], v[7]); v[3] = addv(v[3], v[4]); v[15] = xorv(v[15], v[0]); v[12] = xorv(v[12], v[1]); v[13] = xorv(v[13], v[2]); v[14] = xorv(v[14], v[3]); v[15] = rot8(v[15]); v[12] = rot8(v[12]); v[13] = rot8(v[13]); v[14] = rot8(v[14]); v[10] = addv(v[10], v[15]); v[11] = addv(v[11], v[12]); v[8] = addv(v[8], v[13]); v[9] = addv(v[9], v[14]); v[5] = xorv(v[5], v[10]); v[6] = xorv(v[6], v[11]); v[7] = xorv(v[7], v[8]); v[4] = xorv(v[4], v[9]); v[5] = rot7(v[5]); v[6] = rot7(v[6]); v[7] = rot7(v[7]); v[4] = rot7(v[4]); } TARGET_AVX2 INLINE void transpose_vecs(__m256i vecs[DEGREE]) { // Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high // is 22/33/66/77. __m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]); __m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]); __m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]); __m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]); __m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]); __m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]); __m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]); __m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]); // Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is // 11/33. __m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145); __m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145); __m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367); __m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367); __m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145); __m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145); __m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367); __m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367); // Interleave 128-bit lanes. vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20); vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20); vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20); vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20); vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31); vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31); vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31); vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31); } TARGET_AVX2 INLINE void transpose_msg_vecs(const uint8_t *const *inputs, size_t block_offset, __m256i out[16]) { out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m256i)]); out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m256i)]); out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m256i)]); out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m256i)]); out[4] = loadu(&inputs[4][block_offset + 0 * sizeof(__m256i)]); out[5] = loadu(&inputs[5][block_offset + 0 * sizeof(__m256i)]); out[6] = loadu(&inputs[6][block_offset + 0 * sizeof(__m256i)]); out[7] = loadu(&inputs[7][block_offset + 0 * sizeof(__m256i)]); out[8] = loadu(&inputs[0][block_offset + 1 * sizeof(__m256i)]); out[9] = loadu(&inputs[1][block_offset + 1 * sizeof(__m256i)]); out[10] = loadu(&inputs[2][block_offset + 1 * sizeof(__m256i)]); out[11] = loadu(&inputs[3][block_offset + 1 * sizeof(__m256i)]); out[12] = loadu(&inputs[4][block_offset + 1 * sizeof(__m256i)]); out[13] = loadu(&inputs[5][block_offset + 1 * sizeof(__m256i)]); out[14] = loadu(&inputs[6][block_offset + 1 * sizeof(__m256i)]); out[15] = loadu(&inputs[7][block_offset + 1 * sizeof(__m256i)]); for (size_t i = 0; i < 8; ++i) { _mm_prefetch(&inputs[i][block_offset + 256], _MM_HINT_T0); } transpose_vecs(&out[0]); transpose_vecs(&out[8]); } TARGET_AVX2 INLINE void load_counters(uint64_t counter, bool increment_counter, __m256i *out_lo, __m256i *out_hi) { const __m256i mask = _mm256_set1_epi32(-(int32_t)increment_counter); const __m256i add0 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); const __m256i add1 = _mm256_and_si256(mask, add0); __m256i l = _mm256_add_epi32(_mm256_set1_epi32(counter), add1); __m256i carry = _mm256_cmpgt_epi32(_mm256_xor_si256(add1, _mm256_set1_epi32(0x80000000)), _mm256_xor_si256( l, _mm256_set1_epi32(0x80000000))); __m256i h = _mm256_sub_epi32(_mm256_set1_epi32(counter >> 32), carry); *out_lo = l; *out_hi = h; } TARGET_AVX2 void blake3_hash8_avx2(const uint8_t *const *inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out) { __m256i h_vecs[8] = { set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]), set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]), }; __m256i counter_low_vec, counter_high_vec; load_counters(counter, increment_counter, &counter_low_vec, &counter_high_vec); uint8_t block_flags = flags | flags_start; for (size_t block = 0; block < blocks; block++) { if (block + 1 == blocks) { block_flags |= flags_end; } __m256i block_len_vec = set1(BLAKE3_BLOCK_LEN); __m256i block_flags_vec = set1(block_flags); __m256i msg_vecs[16]; transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); __m256i v[16] = { h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]), counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, }; round_fn(v, msg_vecs, 0); round_fn(v, msg_vecs, 1); round_fn(v, msg_vecs, 2); round_fn(v, msg_vecs, 3); round_fn(v, msg_vecs, 4); round_fn(v, msg_vecs, 5); round_fn(v, msg_vecs, 6); h_vecs[0] = xorv(v[0], v[8]); h_vecs[1] = xorv(v[1], v[9]); h_vecs[2] = xorv(v[2], v[10]); h_vecs[3] = xorv(v[3], v[11]); h_vecs[4] = xorv(v[4], v[12]); h_vecs[5] = xorv(v[5], v[13]); h_vecs[6] = xorv(v[6], v[14]); h_vecs[7] = xorv(v[7], v[15]); block_flags = flags; } transpose_vecs(h_vecs); storeu(h_vecs[0], &out[0 * sizeof(__m256i)]); storeu(h_vecs[1], &out[1 * sizeof(__m256i)]); storeu(h_vecs[2], &out[2 * sizeof(__m256i)]); storeu(h_vecs[3], &out[3 * sizeof(__m256i)]); storeu(h_vecs[4], &out[4 * sizeof(__m256i)]); storeu(h_vecs[5], &out[5 * sizeof(__m256i)]); storeu(h_vecs[6], &out[6 * sizeof(__m256i)]); storeu(h_vecs[7], &out[7 * sizeof(__m256i)]); } #if !defined(BLAKE3_NO_SSE41) void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out); #else void blake3_hash_many_portable(const uint8_t *const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out); #endif void blake3_hash_many_avx2(const uint8_t *const *inputs, size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out) { while (num_inputs >= DEGREE) { blake3_hash8_avx2(inputs, blocks, key, counter, increment_counter, flags, flags_start, flags_end, out); if (increment_counter) { counter += DEGREE; } inputs += DEGREE; num_inputs -= DEGREE; out = &out[DEGREE * BLAKE3_OUT_LEN]; } #if !defined(BLAKE3_NO_SSE41) blake3_hash_many_sse41(inputs, num_inputs, blocks, key, counter, increment_counter, flags, flags_start, flags_end, out); #else blake3_hash_many_portable(inputs, num_inputs, blocks, key, counter, increment_counter, flags, flags_start, flags_end, out); #endif }