-- Do not edit! Automatically generated by create-lapack-ffi. module Numeric.BLAS.ComfortArray.Double where import qualified Numeric.BLAS.FFI.Double as FFI import qualified Numeric.Netlib.ComfortArray.Utility as Call import Numeric.Netlib.ComfortArray.Utility (ZeroInt) import qualified Data.Array.Comfort.Storable.Mutable as MutArray import qualified Data.Array.Comfort.Storable as Array import Data.Array.Comfort.Storable.Mutable (IOArray) import Data.Array.Comfort.Storable (Array) import Foreign.Storable.Complex () import Foreign.Storable (peek) import Foreign.C.Types (CInt) import Control.Monad.Trans.Cont (evalContT) import Control.Monad.IO.Class (liftIO) import Control.Applicative (pure, (<*>)) asum :: Int {- ^ n -} -> Array ZeroInt Double {- ^ dx -} -> Int {- ^ incx -} -> IO Double asum n dx incx = do let dxDim0 = Call.sizes1 $ Array.shape dx Call.assert "asum: 1+(n-1)*abs(incx) == dxDim0" (1+(n-1)*abs(incx) == dxDim0) evalContT $ do nPtr <- Call.cint n dxPtr <- Call.array dx incxPtr <- Call.cint incx liftIO $ FFI.asum nPtr dxPtr incxPtr axpy :: Int {- ^ n -} -> Double {- ^ da -} -> Array ZeroInt Double {- ^ dx -} -> Int {- ^ incx -} -> IOArray ZeroInt Double {- ^ dy -} -> Int {- ^ incy -} -> IO () axpy n da dx incx dy incy = do let dxDim0 = Call.sizes1 $ Array.shape dx let dyDim0 = Call.sizes1 $ MutArray.shape dy Call.assert "axpy: 1+(n-1)*abs(incx) == dxDim0" (1+(n-1)*abs(incx) == dxDim0) Call.assert "axpy: 1+(n-1)*abs(incy) == dyDim0" (1+(n-1)*abs(incy) == dyDim0) evalContT $ do nPtr <- Call.cint n daPtr <- Call.double da dxPtr <- Call.array dx incxPtr <- Call.cint incx dyPtr <- Call.ioarray dy incyPtr <- Call.cint incy liftIO $ FFI.axpy nPtr daPtr dxPtr incxPtr dyPtr incyPtr copy :: Int {- ^ n -} -> Array ZeroInt Double {- ^ dx -} -> Int {- ^ incx -} -> Int {- ^ incy -} -> IO (Array ZeroInt Double) copy n dx incx incy = do let dxDim0 = Call.sizes1 $ Array.shape dx Call.assert "copy: 1+(n-1)*abs(incx) == dxDim0" (1+(n-1)*abs(incx) == dxDim0) dy <- Call.newArray1 (1+(n-1)*abs(incy)) evalContT $ do nPtr <- Call.cint n dxPtr <- Call.array dx incxPtr <- Call.cint incx dyPtr <- Call.ioarray dy incyPtr <- Call.cint incy liftIO $ FFI.copy nPtr dxPtr incxPtr dyPtr incyPtr liftIO $ Call.freezeArray dy dot :: Int {- ^ n -} -> Array ZeroInt Double {- ^ dx -} -> Int {- ^ incx -} -> Array ZeroInt Double {- ^ dy -} -> Int {- ^ incy -} -> IO Double dot n dx incx dy incy = do let dxDim0 = Call.sizes1 $ Array.shape dx let dyDim0 = Call.sizes1 $ Array.shape dy Call.assert "dot: 1+(n-1)*abs(incx) == dxDim0" (1+(n-1)*abs(incx) == dxDim0) Call.assert "dot: 1+(n-1)*abs(incy) == dyDim0" (1+(n-1)*abs(incy) == dyDim0) evalContT $ do nPtr <- Call.cint n dxPtr <- Call.array dx incxPtr <- Call.cint incx dyPtr <- Call.array dy incyPtr <- Call.cint incy liftIO $ FFI.dot nPtr dxPtr incxPtr dyPtr incyPtr gbmv :: Char {- ^ trans -} -> Int {- ^ m -} -> Int {- ^ kl -} -> Int {- ^ ku -} -> Double {- ^ alpha -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> Array ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> Double {- ^ beta -} -> IOArray ZeroInt Double {- ^ y -} -> Int {- ^ incy -} -> IO () gbmv trans m kl ku alpha a x incx beta y incy = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let xDim0 = Call.sizes1 $ Array.shape x let yDim0 = Call.sizes1 $ MutArray.shape y let n = aDim0 let lda = aDim1 let _xSize = xDim0 let _ySize = yDim0 evalContT $ do transPtr <- Call.char trans mPtr <- Call.cint m nPtr <- Call.cint n klPtr <- Call.cint kl kuPtr <- Call.cint ku alphaPtr <- Call.double alpha aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.array x incxPtr <- Call.cint incx betaPtr <- Call.double beta yPtr <- Call.ioarray y incyPtr <- Call.cint incy liftIO $ FFI.gbmv transPtr mPtr nPtr klPtr kuPtr alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr gemm :: Char {- ^ transa -} -> Char {- ^ transb -} -> Int {- ^ m -} -> Int {- ^ k -} -> Double {- ^ alpha -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> Array (ZeroInt,ZeroInt) Double {- ^ b -} -> Double {- ^ beta -} -> IOArray (ZeroInt,ZeroInt) Double {- ^ c -} -> IO () gemm transa transb m k alpha a b beta c = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let (bDim0,bDim1) = Call.sizes2 $ Array.shape b let (cDim0,cDim1) = Call.sizes2 $ MutArray.shape c let _ka = aDim0 let lda = aDim1 let _kb = bDim0 let ldb = bDim1 let n = cDim0 let ldc = cDim1 evalContT $ do transaPtr <- Call.char transa transbPtr <- Call.char transb mPtr <- Call.cint m nPtr <- Call.cint n kPtr <- Call.cint k alphaPtr <- Call.double alpha aPtr <- Call.array a ldaPtr <- Call.cint lda bPtr <- Call.array b ldbPtr <- Call.cint ldb betaPtr <- Call.double beta cPtr <- Call.ioarray c ldcPtr <- Call.cint ldc liftIO $ FFI.gemm transaPtr transbPtr mPtr nPtr kPtr alphaPtr aPtr ldaPtr bPtr ldbPtr betaPtr cPtr ldcPtr gemv :: Char {- ^ trans -} -> Int {- ^ m -} -> Double {- ^ alpha -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> Array ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> Double {- ^ beta -} -> IOArray ZeroInt Double {- ^ y -} -> Int {- ^ incy -} -> IO () gemv trans m alpha a x incx beta y incy = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let xDim0 = Call.sizes1 $ Array.shape x let yDim0 = Call.sizes1 $ MutArray.shape y let n = aDim0 let lda = aDim1 let _xSize = xDim0 let _ySize = yDim0 evalContT $ do transPtr <- Call.char trans mPtr <- Call.cint m nPtr <- Call.cint n alphaPtr <- Call.double alpha aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.array x incxPtr <- Call.cint incx betaPtr <- Call.double beta yPtr <- Call.ioarray y incyPtr <- Call.cint incy liftIO $ FFI.gemv transPtr mPtr nPtr alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr ger :: Int {- ^ m -} -> Double {- ^ alpha -} -> Array ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> Array ZeroInt Double {- ^ y -} -> Int {- ^ incy -} -> IOArray (ZeroInt,ZeroInt) Double {- ^ a -} -> IO () ger m alpha x incx y incy a = do let xDim0 = Call.sizes1 $ Array.shape x let yDim0 = Call.sizes1 $ Array.shape y let (aDim0,aDim1) = Call.sizes2 $ MutArray.shape a let _xSize = xDim0 let _ySize = yDim0 let n = aDim0 let lda = aDim1 evalContT $ do mPtr <- Call.cint m nPtr <- Call.cint n alphaPtr <- Call.double alpha xPtr <- Call.array x incxPtr <- Call.cint incx yPtr <- Call.array y incyPtr <- Call.cint incy aPtr <- Call.ioarray a ldaPtr <- Call.cint lda liftIO $ FFI.ger mPtr nPtr alphaPtr xPtr incxPtr yPtr incyPtr aPtr ldaPtr sbmv :: Char {- ^ uplo -} -> Int {- ^ k -} -> Double {- ^ alpha -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> Array ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> Double {- ^ beta -} -> IOArray ZeroInt Double {- ^ y -} -> Int {- ^ incy -} -> IO () sbmv uplo k alpha a x incx beta y incy = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let xDim0 = Call.sizes1 $ Array.shape x let yDim0 = Call.sizes1 $ MutArray.shape y let n = aDim0 let lda = aDim1 let _xSize = xDim0 let _ySize = yDim0 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n kPtr <- Call.cint k alphaPtr <- Call.double alpha aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.array x incxPtr <- Call.cint incx betaPtr <- Call.double beta yPtr <- Call.ioarray y incyPtr <- Call.cint incy liftIO $ FFI.sbmv uploPtr nPtr kPtr alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr symv :: Char {- ^ uplo -} -> Double {- ^ alpha -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> Array ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> Double {- ^ beta -} -> IOArray ZeroInt Double {- ^ y -} -> Int {- ^ incy -} -> IO () symv uplo alpha a x incx beta y incy = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let xDim0 = Call.sizes1 $ Array.shape x let yDim0 = Call.sizes1 $ MutArray.shape y let n = aDim0 let lda = aDim1 let _xSize = xDim0 let _ySize = yDim0 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n alphaPtr <- Call.double alpha aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.array x incxPtr <- Call.cint incx betaPtr <- Call.double beta yPtr <- Call.ioarray y incyPtr <- Call.cint incy liftIO $ FFI.symv uploPtr nPtr alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr syr :: Char {- ^ uplo -} -> Double {- ^ alpha -} -> Array ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> IOArray (ZeroInt,ZeroInt) Double {- ^ a -} -> IO () syr uplo alpha x incx a = do let xDim0 = Call.sizes1 $ Array.shape x let (aDim0,aDim1) = Call.sizes2 $ MutArray.shape a let _xSize = xDim0 let n = aDim0 let lda = aDim1 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n alphaPtr <- Call.double alpha xPtr <- Call.array x incxPtr <- Call.cint incx aPtr <- Call.ioarray a ldaPtr <- Call.cint lda liftIO $ FFI.syr uploPtr nPtr alphaPtr xPtr incxPtr aPtr ldaPtr syr2 :: Char {- ^ uplo -} -> Double {- ^ alpha -} -> Array ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> Array ZeroInt Double {- ^ y -} -> Int {- ^ incy -} -> IOArray (ZeroInt,ZeroInt) Double {- ^ a -} -> IO () syr2 uplo alpha x incx y incy a = do let xDim0 = Call.sizes1 $ Array.shape x let yDim0 = Call.sizes1 $ Array.shape y let (aDim0,aDim1) = Call.sizes2 $ MutArray.shape a let _xSize = xDim0 let _ySize = yDim0 let n = aDim0 let lda = aDim1 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n alphaPtr <- Call.double alpha xPtr <- Call.array x incxPtr <- Call.cint incx yPtr <- Call.array y incyPtr <- Call.cint incy aPtr <- Call.ioarray a ldaPtr <- Call.cint lda liftIO $ FFI.syr2 uploPtr nPtr alphaPtr xPtr incxPtr yPtr incyPtr aPtr ldaPtr spmv :: Char {- ^ uplo -} -> Int {- ^ n -} -> Double {- ^ alpha -} -> Array ZeroInt Double {- ^ ap -} -> Array ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> Double {- ^ beta -} -> IOArray ZeroInt Double {- ^ y -} -> Int {- ^ incy -} -> IO () spmv uplo n alpha ap x incx beta y incy = do let apDim0 = Call.sizes1 $ Array.shape ap let xDim0 = Call.sizes1 $ Array.shape x let yDim0 = Call.sizes1 $ MutArray.shape y let _apSize = apDim0 let _xSize = xDim0 let _ySize = yDim0 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n alphaPtr <- Call.double alpha apPtr <- Call.array ap xPtr <- Call.array x incxPtr <- Call.cint incx betaPtr <- Call.double beta yPtr <- Call.ioarray y incyPtr <- Call.cint incy liftIO $ FFI.spmv uploPtr nPtr alphaPtr apPtr xPtr incxPtr betaPtr yPtr incyPtr spr :: Char {- ^ uplo -} -> Int {- ^ n -} -> Double {- ^ alpha -} -> Array ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> IOArray ZeroInt Double {- ^ ap -} -> IO () spr uplo n alpha x incx ap = do let xDim0 = Call.sizes1 $ Array.shape x let apDim0 = Call.sizes1 $ MutArray.shape ap let _xSize = xDim0 let _apSize = apDim0 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n alphaPtr <- Call.double alpha xPtr <- Call.array x incxPtr <- Call.cint incx apPtr <- Call.ioarray ap liftIO $ FFI.spr uploPtr nPtr alphaPtr xPtr incxPtr apPtr spr2 :: Char {- ^ uplo -} -> Int {- ^ n -} -> Double {- ^ alpha -} -> Array ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> Array ZeroInt Double {- ^ y -} -> Int {- ^ incy -} -> IOArray ZeroInt Double {- ^ ap -} -> IO () spr2 uplo n alpha x incx y incy ap = do let xDim0 = Call.sizes1 $ Array.shape x let yDim0 = Call.sizes1 $ Array.shape y let apDim0 = Call.sizes1 $ MutArray.shape ap let _xSize = xDim0 let _ySize = yDim0 let _apSize = apDim0 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n alphaPtr <- Call.double alpha xPtr <- Call.array x incxPtr <- Call.cint incx yPtr <- Call.array y incyPtr <- Call.cint incy apPtr <- Call.ioarray ap liftIO $ FFI.spr2 uploPtr nPtr alphaPtr xPtr incxPtr yPtr incyPtr apPtr iamax :: Int {- ^ n -} -> Array ZeroInt Double {- ^ dx -} -> Int {- ^ incx -} -> IO CInt iamax n dx incx = do let dxDim0 = Call.sizes1 $ Array.shape dx Call.assert "iamax: 1+(n-1)*abs(incx) == dxDim0" (1+(n-1)*abs(incx) == dxDim0) evalContT $ do nPtr <- Call.cint n dxPtr <- Call.array dx incxPtr <- Call.cint incx liftIO $ FFI.iamax nPtr dxPtr incxPtr nrm2 :: Int {- ^ n -} -> Array ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> IO Double nrm2 n x incx = do let xDim0 = Call.sizes1 $ Array.shape x Call.assert "nrm2: 1+(n-1)*abs(incx) == xDim0" (1+(n-1)*abs(incx) == xDim0) evalContT $ do nPtr <- Call.cint n xPtr <- Call.array x incxPtr <- Call.cint incx liftIO $ FFI.nrm2 nPtr xPtr incxPtr rot :: Int {- ^ n -} -> IOArray ZeroInt Double {- ^ dx -} -> Int {- ^ incx -} -> IOArray ZeroInt Double {- ^ dy -} -> Int {- ^ incy -} -> Double {- ^ c -} -> Double {- ^ s -} -> IO () rot n dx incx dy incy c s = do let dxDim0 = Call.sizes1 $ MutArray.shape dx let dyDim0 = Call.sizes1 $ MutArray.shape dy Call.assert "rot: 1+(n-1)*abs(incx) == dxDim0" (1+(n-1)*abs(incx) == dxDim0) Call.assert "rot: 1+(n-1)*abs(incy) == dyDim0" (1+(n-1)*abs(incy) == dyDim0) evalContT $ do nPtr <- Call.cint n dxPtr <- Call.ioarray dx incxPtr <- Call.cint incx dyPtr <- Call.ioarray dy incyPtr <- Call.cint incy cPtr <- Call.double c sPtr <- Call.double s liftIO $ FFI.rot nPtr dxPtr incxPtr dyPtr incyPtr cPtr sPtr rotg :: Double {- ^ da -} -> Double {- ^ db -} -> IO (Double, Double) rotg da db = do evalContT $ do daPtr <- Call.double da dbPtr <- Call.double db cPtr <- Call.alloca sPtr <- Call.alloca liftIO $ FFI.rotg daPtr dbPtr cPtr sPtr liftIO $ pure (,) <*> peek cPtr <*> peek sPtr rotm :: Int {- ^ n -} -> IOArray ZeroInt Double {- ^ dx -} -> Int {- ^ incx -} -> IOArray ZeroInt Double {- ^ dy -} -> Int {- ^ incy -} -> Array ZeroInt Double {- ^ dparam -} -> IO () rotm n dx incx dy incy dparam = do let dxDim0 = Call.sizes1 $ MutArray.shape dx let dyDim0 = Call.sizes1 $ MutArray.shape dy let dparamDim0 = Call.sizes1 $ Array.shape dparam Call.assert "rotm: 1+(n-1)*abs(incx) == dxDim0" (1+(n-1)*abs(incx) == dxDim0) Call.assert "rotm: 1+(n-1)*abs(incy) == dyDim0" (1+(n-1)*abs(incy) == dyDim0) Call.assert "rotm: 5 == dparamDim0" (5 == dparamDim0) evalContT $ do nPtr <- Call.cint n dxPtr <- Call.ioarray dx incxPtr <- Call.cint incx dyPtr <- Call.ioarray dy incyPtr <- Call.cint incy dparamPtr <- Call.array dparam liftIO $ FFI.rotm nPtr dxPtr incxPtr dyPtr incyPtr dparamPtr rotmg :: Double {- ^ dd1 -} -> Double {- ^ dd2 -} -> Double {- ^ dx1 -} -> Double {- ^ dy1 -} -> IO (Double, Double, Double, Array ZeroInt Double) rotmg dd1 dd2 dx1 dy1 = do dparam <- Call.newArray1 5 evalContT $ do dd1Ptr <- Call.double dd1 dd2Ptr <- Call.double dd2 dx1Ptr <- Call.double dx1 dy1Ptr <- Call.double dy1 dparamPtr <- Call.ioarray dparam liftIO $ FFI.rotmg dd1Ptr dd2Ptr dx1Ptr dy1Ptr dparamPtr liftIO $ pure (,,,) <*> peek dd1Ptr <*> peek dd2Ptr <*> peek dx1Ptr <*> Call.freezeArray dparam scal :: Int {- ^ n -} -> Double {- ^ da -} -> IOArray ZeroInt Double {- ^ dx -} -> Int {- ^ incx -} -> IO () scal n da dx incx = do let dxDim0 = Call.sizes1 $ MutArray.shape dx Call.assert "scal: 1+(n-1)*abs(incx) == dxDim0" (1+(n-1)*abs(incx) == dxDim0) evalContT $ do nPtr <- Call.cint n daPtr <- Call.double da dxPtr <- Call.ioarray dx incxPtr <- Call.cint incx liftIO $ FFI.scal nPtr daPtr dxPtr incxPtr sdot :: Array ZeroInt Float {- ^ sx -} -> Int {- ^ incx -} -> Array ZeroInt Float {- ^ sy -} -> Int {- ^ incy -} -> IO Double sdot sx incx sy incy = do let sxDim0 = Call.sizes1 $ Array.shape sx let syDim0 = Call.sizes1 $ Array.shape sy let n = sxDim0 Call.assert "sdot: n == syDim0" (n == syDim0) evalContT $ do nPtr <- Call.cint n sxPtr <- Call.array sx incxPtr <- Call.cint incx syPtr <- Call.array sy incyPtr <- Call.cint incy liftIO $ FFI.sdot nPtr sxPtr incxPtr syPtr incyPtr swap :: Int {- ^ n -} -> IOArray ZeroInt Double {- ^ dx -} -> Int {- ^ incx -} -> IOArray ZeroInt Double {- ^ dy -} -> Int {- ^ incy -} -> IO () swap n dx incx dy incy = do let dxDim0 = Call.sizes1 $ MutArray.shape dx let dyDim0 = Call.sizes1 $ MutArray.shape dy Call.assert "swap: 1+(n-1)*abs(incx) == dxDim0" (1+(n-1)*abs(incx) == dxDim0) Call.assert "swap: 1+(n-1)*abs(incy) == dyDim0" (1+(n-1)*abs(incy) == dyDim0) evalContT $ do nPtr <- Call.cint n dxPtr <- Call.ioarray dx incxPtr <- Call.cint incx dyPtr <- Call.ioarray dy incyPtr <- Call.cint incy liftIO $ FFI.swap nPtr dxPtr incxPtr dyPtr incyPtr symm :: Char {- ^ side -} -> Char {- ^ uplo -} -> Int {- ^ m -} -> Double {- ^ alpha -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> Array (ZeroInt,ZeroInt) Double {- ^ b -} -> Double {- ^ beta -} -> IOArray (ZeroInt,ZeroInt) Double {- ^ c -} -> IO () symm side uplo m alpha a b beta c = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let (bDim0,bDim1) = Call.sizes2 $ Array.shape b let (cDim0,cDim1) = Call.sizes2 $ MutArray.shape c let _ka = aDim0 let lda = aDim1 let n = bDim0 let ldb = bDim1 let ldc = cDim1 Call.assert "symm: n == cDim0" (n == cDim0) evalContT $ do sidePtr <- Call.char side uploPtr <- Call.char uplo mPtr <- Call.cint m nPtr <- Call.cint n alphaPtr <- Call.double alpha aPtr <- Call.array a ldaPtr <- Call.cint lda bPtr <- Call.array b ldbPtr <- Call.cint ldb betaPtr <- Call.double beta cPtr <- Call.ioarray c ldcPtr <- Call.cint ldc liftIO $ FFI.symm sidePtr uploPtr mPtr nPtr alphaPtr aPtr ldaPtr bPtr ldbPtr betaPtr cPtr ldcPtr syr2k :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Int {- ^ k -} -> Double {- ^ alpha -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> Array (ZeroInt,ZeroInt) Double {- ^ b -} -> Double {- ^ beta -} -> IOArray (ZeroInt,ZeroInt) Double {- ^ c -} -> IO () syr2k uplo trans k alpha a b beta c = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let (bDim0,bDim1) = Call.sizes2 $ Array.shape b let (cDim0,cDim1) = Call.sizes2 $ MutArray.shape c let _ka = aDim0 let lda = aDim1 let _kb = bDim0 let ldb = bDim1 let n = cDim0 let ldc = cDim1 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans nPtr <- Call.cint n kPtr <- Call.cint k alphaPtr <- Call.double alpha aPtr <- Call.array a ldaPtr <- Call.cint lda bPtr <- Call.array b ldbPtr <- Call.cint ldb betaPtr <- Call.double beta cPtr <- Call.ioarray c ldcPtr <- Call.cint ldc liftIO $ FFI.syr2k uploPtr transPtr nPtr kPtr alphaPtr aPtr ldaPtr bPtr ldbPtr betaPtr cPtr ldcPtr syrk :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Int {- ^ k -} -> Double {- ^ alpha -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> Double {- ^ beta -} -> IOArray (ZeroInt,ZeroInt) Double {- ^ c -} -> IO () syrk uplo trans k alpha a beta c = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let (cDim0,cDim1) = Call.sizes2 $ MutArray.shape c let _ka = aDim0 let lda = aDim1 let n = cDim0 let ldc = cDim1 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans nPtr <- Call.cint n kPtr <- Call.cint k alphaPtr <- Call.double alpha aPtr <- Call.array a ldaPtr <- Call.cint lda betaPtr <- Call.double beta cPtr <- Call.ioarray c ldcPtr <- Call.cint ldc liftIO $ FFI.syrk uploPtr transPtr nPtr kPtr alphaPtr aPtr ldaPtr betaPtr cPtr ldcPtr tbmv :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Char {- ^ diag -} -> Int {- ^ k -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> IOArray ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> IO () tbmv uplo trans diag k a x incx = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let xDim0 = Call.sizes1 $ MutArray.shape x let n = aDim0 let lda = aDim1 let _xSize = xDim0 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans diagPtr <- Call.char diag nPtr <- Call.cint n kPtr <- Call.cint k aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.ioarray x incxPtr <- Call.cint incx liftIO $ FFI.tbmv uploPtr transPtr diagPtr nPtr kPtr aPtr ldaPtr xPtr incxPtr tbsv :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Char {- ^ diag -} -> Int {- ^ k -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> IOArray ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> IO () tbsv uplo trans diag k a x incx = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let xDim0 = Call.sizes1 $ MutArray.shape x let n = aDim0 let lda = aDim1 let _xSize = xDim0 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans diagPtr <- Call.char diag nPtr <- Call.cint n kPtr <- Call.cint k aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.ioarray x incxPtr <- Call.cint incx liftIO $ FFI.tbsv uploPtr transPtr diagPtr nPtr kPtr aPtr ldaPtr xPtr incxPtr tpmv :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Char {- ^ diag -} -> Int {- ^ n -} -> Array ZeroInt Double {- ^ ap -} -> IOArray ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> IO () tpmv uplo trans diag n ap x incx = do let apDim0 = Call.sizes1 $ Array.shape ap let xDim0 = Call.sizes1 $ MutArray.shape x let _apSize = apDim0 let _xSize = xDim0 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans diagPtr <- Call.char diag nPtr <- Call.cint n apPtr <- Call.array ap xPtr <- Call.ioarray x incxPtr <- Call.cint incx liftIO $ FFI.tpmv uploPtr transPtr diagPtr nPtr apPtr xPtr incxPtr tpsv :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Char {- ^ diag -} -> Int {- ^ n -} -> Array ZeroInt Double {- ^ ap -} -> IOArray ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> IO () tpsv uplo trans diag n ap x incx = do let apDim0 = Call.sizes1 $ Array.shape ap let xDim0 = Call.sizes1 $ MutArray.shape x let _apSize = apDim0 let _xSize = xDim0 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans diagPtr <- Call.char diag nPtr <- Call.cint n apPtr <- Call.array ap xPtr <- Call.ioarray x incxPtr <- Call.cint incx liftIO $ FFI.tpsv uploPtr transPtr diagPtr nPtr apPtr xPtr incxPtr trmm :: Char {- ^ side -} -> Char {- ^ uplo -} -> Char {- ^ transa -} -> Char {- ^ diag -} -> Int {- ^ m -} -> Double {- ^ alpha -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> IOArray (ZeroInt,ZeroInt) Double {- ^ b -} -> IO () trmm side uplo transa diag m alpha a b = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let (bDim0,bDim1) = Call.sizes2 $ MutArray.shape b let _k = aDim0 let lda = aDim1 let n = bDim0 let ldb = bDim1 evalContT $ do sidePtr <- Call.char side uploPtr <- Call.char uplo transaPtr <- Call.char transa diagPtr <- Call.char diag mPtr <- Call.cint m nPtr <- Call.cint n alphaPtr <- Call.double alpha aPtr <- Call.array a ldaPtr <- Call.cint lda bPtr <- Call.ioarray b ldbPtr <- Call.cint ldb liftIO $ FFI.trmm sidePtr uploPtr transaPtr diagPtr mPtr nPtr alphaPtr aPtr ldaPtr bPtr ldbPtr trmv :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Char {- ^ diag -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> IOArray ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> IO () trmv uplo trans diag a x incx = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let xDim0 = Call.sizes1 $ MutArray.shape x let n = aDim0 let lda = aDim1 let _xSize = xDim0 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans diagPtr <- Call.char diag nPtr <- Call.cint n aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.ioarray x incxPtr <- Call.cint incx liftIO $ FFI.trmv uploPtr transPtr diagPtr nPtr aPtr ldaPtr xPtr incxPtr trsm :: Char {- ^ side -} -> Char {- ^ uplo -} -> Char {- ^ transa -} -> Char {- ^ diag -} -> Int {- ^ m -} -> Double {- ^ alpha -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> IOArray (ZeroInt,ZeroInt) Double {- ^ b -} -> IO () trsm side uplo transa diag m alpha a b = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let (bDim0,bDim1) = Call.sizes2 $ MutArray.shape b let _k = aDim0 let lda = aDim1 let n = bDim0 let ldb = bDim1 evalContT $ do sidePtr <- Call.char side uploPtr <- Call.char uplo transaPtr <- Call.char transa diagPtr <- Call.char diag mPtr <- Call.cint m nPtr <- Call.cint n alphaPtr <- Call.double alpha aPtr <- Call.array a ldaPtr <- Call.cint lda bPtr <- Call.ioarray b ldbPtr <- Call.cint ldb liftIO $ FFI.trsm sidePtr uploPtr transaPtr diagPtr mPtr nPtr alphaPtr aPtr ldaPtr bPtr ldbPtr trsv :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Char {- ^ diag -} -> Array (ZeroInt,ZeroInt) Double {- ^ a -} -> IOArray ZeroInt Double {- ^ x -} -> Int {- ^ incx -} -> IO () trsv uplo trans diag a x incx = do let (aDim0,aDim1) = Call.sizes2 $ Array.shape a let xDim0 = Call.sizes1 $ MutArray.shape x let n = aDim0 let lda = aDim1 let _xSize = xDim0 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans diagPtr <- Call.char diag nPtr <- Call.cint n aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.ioarray x incxPtr <- Call.cint incx liftIO $ FFI.trsv uploPtr transPtr diagPtr nPtr aPtr ldaPtr xPtr incxPtr