#ifndef _lookup3_h #define _lookup3_h #include #include /* * My best guess at if you are big-endian or little-endian. This may * need adjustment. */ #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ __BYTE_ORDER == __LITTLE_ENDIAN) || \ (defined(i386) || defined(__i386__) || defined(__i486__) || \ defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) # define HASH_LITTLE_ENDIAN 1 # define HASH_BIG_ENDIAN 0 #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ __BYTE_ORDER == __BIG_ENDIAN) || \ (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) # define HASH_LITTLE_ENDIAN 0 # define HASH_BIG_ENDIAN 1 #else # define HASH_LITTLE_ENDIAN 0 # define HASH_BIG_ENDIAN 0 #endif #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) /* * */ #if (defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 610) # define MAYBESTATIC #else # define MAYBESTATIC static inline #endif /* ------------------------------------------------------------------------------- mix -- mix 3 32-bit values reversibly. This is reversible, so any information in (a,b,c) before mix() is still in (a,b,c) after mix(). If four pairs of (a,b,c) inputs are run through mix(), or through mix() in reverse, there are at least 32 bits of the output that are sometimes the same for one pair and different for another pair. This was tested for: * pairs that differed by one bit, by two bits, in any combination of top bits of (a,b,c), or in any combination of bottom bits of (a,b,c). * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed the output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly produced by subtraction) look like a single 1-bit difference. * the base values were pseudorandom, all zero but one bit set, or all zero plus a counter that starts at zero. Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that satisfy this are 4 6 8 16 19 4 9 15 3 18 27 15 14 9 3 7 17 3 Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing for "differ" defined as + with a one-bit base and a two-bit delta. I used http://burtleburtle.net/bob/hash/avalanche.html to choose the operations, constants, and arrangements of the variables. This does not achieve avalanche. There are input bits of (a,b,c) that fail to affect some output bits of (a,b,c), especially of a. The most thoroughly mixed value is c, but it doesn't really even achieve avalanche in c. This allows some parallelism. Read-after-writes are good at doubling the number of bits affected, so the goal of mixing pulls in the opposite direction as the goal of parallelism. I did what I could. Rotates seem to cost as much as shifts on every machine I could lay my hands on, and rotates are much kinder to the top and bottom bits, so I used rotates. ------------------------------------------------------------------------------- */ #define mix(a,b,c) \ { \ a -= c; a ^= rot(c, 4); c += b; \ b -= a; b ^= rot(a, 6); a += c; \ c -= b; c ^= rot(b, 8); b += a; \ a -= c; a ^= rot(c,16); c += b; \ b -= a; b ^= rot(a,19); a += c; \ c -= b; c ^= rot(b, 4); b += a; \ } /* ------------------------------------------------------------------------------- final -- final mixing of 3 32-bit values (a,b,c) into c Pairs of (a,b,c) values differing in only a few bits will usually produce values of c that look totally different. This was tested for * pairs that differed by one bit, by two bits, in any combination of top bits of (a,b,c), or in any combination of bottom bits of (a,b,c). * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed the output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly produced by subtraction) look like a single 1-bit difference. * the base values were pseudorandom, all zero but one bit set, or all zero plus a counter that starts at zero. These constants passed: 14 11 25 16 4 14 24 12 14 25 16 4 14 24 and these came close: 4 8 15 26 3 22 24 10 8 15 26 3 22 24 11 8 15 26 3 22 24 ------------------------------------------------------------------------------- */ #define final(a,b,c) \ { \ c ^= b; c -= rot(b,14); \ a ^= c; a -= rot(c,11); \ b ^= a; b -= rot(a,25); \ c ^= b; c -= rot(b,16); \ a ^= c; a -= rot(c,4); \ b ^= a; b -= rot(a,14); \ c ^= b; c -= rot(b,24); \ } uint32_t _jenkins_hashword(const uint32_t *k, size_t length, uint32_t initval); uint32_t _jenkins_hashlittle(const void *key, size_t length, uint32_t initval); void _jenkins_hashword2(const uint32_t *key, size_t length, uint32_t *pc, uint32_t *pb); void _jenkins_hashlittle2(const void *key, size_t length, uint32_t *pc, uint32_t *pb); MAYBESTATIC void _jenkins_little2_begin(const uint32_t *pc, const uint32_t *pb, uint32_t st[3]) { uint32_t a,b,c; /* Set up the internal state */ a = b = c = 0xdeadbeef + *pc; c += *pb; st[0] = a; st[1] = b; st[2] = c; } MAYBESTATIC size_t _jenkins_little2_frag(const void *key, size_t length, uint32_t st[4], size_t offset) { const uint8_t *k = key; size_t i; for (i = 0; i < length && offset < 12; i++, offset++) { st[offset >> 2] += k[i] << (8 * (offset & 3)); } if (offset == 12) { uint32_t a = st[0], b = st[1], c = st[2]; mix(a,b,c); st[0] = a; st[1] = b; st[2] = c; } return offset; } MAYBESTATIC size_t _jenkins_little2_step(const void *key, size_t length, uint32_t st[3]) { uint32_t a = st[0], b = st[1], c = st[2]; /* internal state */ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ u.ptr = key; if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ while (length >= 12) { a += k[0]; b += k[1]; c += k[2]; mix(a,b,c); length -= 12; k += 3; } /*----------------------------- handle the last (probably partial) block */ /* * "k[2]&0xffffff" actually reads beyond the end of the string, but * then masks off the part it's not allowed to read. Because the * string is aligned, the masked-off tail is in the same word as the * rest of the string. Every machine with memory protection I've seen * does it on word boundaries, so is OK with this. But VALGRIND will * still catch it and complain. The masking trick does make the hash * noticably faster for short strings (like English words). */ #ifndef VALGRIND switch(length) { case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; case 8 : b+=k[1]; a+=k[0]; break; case 7 : b+=k[1]&0xffffff; a+=k[0]; break; case 6 : b+=k[1]&0xffff; a+=k[0]; break; case 5 : b+=k[1]&0xff; a+=k[0]; break; case 4 : a+=k[0]; break; case 3 : a+=k[0]&0xffffff; break; case 2 : a+=k[0]&0xffff; break; case 1 : a+=k[0]&0xff; break; } #else /* make valgrind happy */ k8 = (const uint8_t *)k; switch(length) { case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ case 9 : c+=k8[8]; /* fall through */ case 8 : b+=k[1]; a+=k[0]; break; case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ case 5 : b+=k8[4]; /* fall through */ case 4 : a+=k[0]; break; case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ case 1 : a+=k8[0]; break; } #endif /* !valgrind */ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ const uint8_t *k8; /*--------------- all but last block: aligned reads and different mixing */ while (length >= 12) { a += k[0] + (((uint32_t)k[1])<<16); b += k[2] + (((uint32_t)k[3])<<16); c += k[4] + (((uint32_t)k[5])<<16); mix(a,b,c); length -= 12; k += 6; } /*----------------------------- handle the last (probably partial) block */ k8 = (const uint8_t *)k; switch(length) { case 12: c+=k[4]+(((uint32_t)k[5])<<16); b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ case 10: c+=k[4]; b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 9 : c+=k8[8]; /* fall through */ case 8 : b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ case 6 : b+=k[2]; a+=k[0]+(((uint32_t)k[1])<<16); break; case 5 : b+=k8[4]; /* fall through */ case 4 : a+=k[0]+(((uint32_t)k[1])<<16); break; case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ case 2 : a+=k[0]; break; case 1 : a+=k8[0]; break; } } else { /* need to read the key one byte at a time */ const uint8_t *k = (const uint8_t *)key; /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ while (length >= 12) { a += k[0]; a += ((uint32_t)k[1])<<8; a += ((uint32_t)k[2])<<16; a += ((uint32_t)k[3])<<24; b += k[4]; b += ((uint32_t)k[5])<<8; b += ((uint32_t)k[6])<<16; b += ((uint32_t)k[7])<<24; c += k[8]; c += ((uint32_t)k[9])<<8; c += ((uint32_t)k[10])<<16; c += ((uint32_t)k[11])<<24; mix(a,b,c); length -= 12; k += 12; } /*-------------------------------- last block: affect all 32 bits of (c) */ switch(length) /* all the case statements fall through */ { case 12: c+=((uint32_t)k[11])<<24; case 11: c+=((uint32_t)k[10])<<16; case 10: c+=((uint32_t)k[9])<<8; case 9 : c+=k[8]; case 8 : b+=((uint32_t)k[7])<<24; case 7 : b+=((uint32_t)k[6])<<16; case 6 : b+=((uint32_t)k[5])<<8; case 5 : b+=k[4]; case 4 : a+=((uint32_t)k[3])<<24; case 3 : a+=((uint32_t)k[2])<<16; case 2 : a+=((uint32_t)k[1])<<8; case 1 : a+=k[0]; break; } } st[0] = a; st[1] = b; st[2] = c; return length; } MAYBESTATIC void _jenkins_little2_end(int nonempty, uint32_t *pc, uint32_t *pb, const uint32_t st[3]) { uint32_t a = st[0], b = st[1], c = st[2]; if (nonempty) final(a,b,c); *pc=c; *pb=b; } #endif /* _lookup3_h */