{-| This module exposes a DSL for writing symbolic computations atop the Boolector SMT solver. The monadic interface manages the interface to Boolector, caches already created sorts and variables, etc. A Boolector computation should not be shared between threads. Consider, the simple example from the Z3 tutorial written in SMT LIB format: @ (declare-fun f (Int) Int) (declare-fun a () Int) ; a is a constant (declare-const b Int) ; syntax sugar for (declare-fun b () Int) (assert (> a 20)) (assert (> b a)) (assert (= (f 10) 1)) (check-sat) (get-model) @ With this library you can write the same program in Haskell: @ main :: IO () main = do bs <- B.'newBoolectorState' Nothing B.'evalBoolector' bs $ do -- Create sorts: u32 <- B.'bitvecSort' 32 fSort <- B.'funSort' [u32] u32 -- Create variables f, a, and b: f <- B.'uf' fSort "f" a <- B.'var' u32 "a" b <- B.'var' u32 "b" -- Create several constants: c20 <- B.'unsignedInt' 20 u32 c10 <- B.'unsignedInt' 10 u32 c1 <- B.'one' u32 -- Make assertions: B.'assert' =<< B.'ugt' a c20 B.'assert' =<< B.'ugt' b a res <- B.'apply' [c10] f B.'assert' =<< B.'eq' res c1 -- Check satisfiability: B.'Sat' <- B.'sat' -- Get model: ma <- B.'unsignedBvAssignment' a mb <- B.'unsignedBvAssignment' b -- Check model: assert (ma == 21) $ return () assert (mb == 22) $ return () @ The API is inspired by the Z3 Haskell API . -} {-# language CPP #-} {-# language GeneralizedNewtypeDeriving #-} {-# language NoMonomorphismRestriction #-} {-# language FlexibleContexts #-} module Boolector ( -- * Boolector monadic computations Boolector , MonadBoolector(..) , evalBoolector , runBoolector -- ** Boolector state , BoolectorState , newBoolectorState -- ** Options and configurations , Option(..) , setOpt , getOpt , SatSolver(..) , setSatSolver -- * SAT/SMT queries , Node , sat , limitedSat , simplify , Status(..) -- ** Assert and assume , assert , assume , failed , fixateAssumptions , resetAssumptions , push , pop -- ** Variables and constants , var , const , constd , consth -- *** Booleans , bool , true , false -- *** Bit-vectors , zero , one , ones , unsignedInt , signedInt -- *** Arrays , array -- *** Functions , fun , uf -- **** Parameters , param -- *** Quantified terms , forall , exists -- ** Operations -- *** Implications and conditionals , implies , iff , cond -- *** Equality checking , eq , ne -- *** Bit flipping, extraction, extension, and reduction , not , neg , redor , redxor , redand , slice , uext , sext , concat -- *** Bit-wise operations , xor , xnor , and , nand , or , nor , sll , srl , sra , rol , ror -- *** Arithmetic operations , add , uaddo , saddo , inc , sub , usubo , ssubo , dec , mul , umulo , smulo , udiv , sdiv , sdivo , urem , srem , smod -- *** Comparison operations , ult , slt , ulte , slte , ugt , sgt , ugte , sgte -- *** Array operations , read , write -- *** Function operations , apply -- ** Accessors , getSort , funGetDomainSort , funGetCodomainSort , funGetArity , getSymbol , getWidth , getIndexWidth , isConst , isVar , isArray , isArrayVar , isParam , isBoundParam , isUf , isFun -- ** Models , bvAssignment , unsignedBvAssignment , signedBvAssignment , boolAssignment -- ** Sorts , Sort , boolSort , bitvecSort , funSort , arraySort -- *** Accessors , isEqualSort , isArraySort , isBitvecSort , isFunSort , funSortCheck -- * Debug dumping , dumpBtorNode , dumpSmt2Node , dumpBtor , dumpSmt2 ) where import Boolector.Foreign (Option(..), Status(..), Node, Sort) import qualified Boolector.Foreign as B import Data.Char (isDigit) import Data.Map (Map) import qualified Data.Map as Map import Data.IntMap (IntMap) import qualified Data.IntMap as IntMap import Data.Word import Control.Monad.State.Strict import Control.Exception hiding (assert) import Control.Concurrent import Prelude hiding (read, not, and, or, const, concat) import qualified Prelude as Prelude -- -- Boolector monad -- -- | Type class for Monads that wish to perform symbolic computations. class MonadIO m => MonadBoolector m where -- | Get the Boolector state. getBoolectorState :: m BoolectorState -- | Put the Boolector state. putBoolectorState :: BoolectorState -> m () instance MonadBoolector Boolector where getBoolectorState = get putBoolectorState = put -- | Solver state and cache data BoolectorState = BoolectorState { unBoolectorState :: B.Btor , unBoolectorCache :: BoolectorCache } -- | Bolector monad, keeping track of underlying solver state. newtype Boolector a = Boolector { unBoolector :: StateT BoolectorState IO a } deriving (Functor, Applicative, Monad, MonadState BoolectorState, MonadIO) -- | Evaluate a Boolector action with a given configurations. evalBoolector :: BoolectorState -> Boolector a -> IO a evalBoolector bState act = evalStateT (unBoolector act) bState -- | Like 'evalBoolector', but take an explicit starting BoolectorState, and -- return the final BoolectorState runBoolector :: BoolectorState -> Boolector a -> IO (a, BoolectorState) runBoolector bState act = runStateT (unBoolector act) bState -- | Create new Boolector state with optional timeout. By default, we enable -- support for model generation and incremental solving. newBoolectorState :: Maybe Int -> IO BoolectorState newBoolectorState Nothing = do b <- B.new B.setOpt b OPT_MODEL_GEN 2 B.setOpt b OPT_AUTO_CLEANUP 1 B.setOpt b OPT_INCREMENTAL 1 return $ BoolectorState b emptyBoolectorCache newBoolectorState (Just time) = do term <- newMVar 0 btorState@(BoolectorState b _) <- newBoolectorState Nothing B.setTerm b $ \_ -> do readMVar term void $ forkIO $ do threadDelay $ time * 1000 putMVar term 1 -- this will cause boolector eval to fail if not done return btorState -- | Set option. setOpt :: MonadBoolector m => Option -> Word -> m () setOpt o w = liftBoolector2 B.setOpt o (fromIntegral w) -- | Get option. getOpt :: MonadBoolector m => Option -> m Word getOpt o = fromIntegral `liftM` liftBoolector1 B.getOpt o -- | Which sat solver to use. data SatSolver = Lingeling | PicoSAT | MiniSAT deriving Show -- | Set the SAT solver to use. Returns 'True' if sucessfull. setSatSolver :: MonadBoolector m => SatSolver -> m () setSatSolver solver = liftBoolector1 B.setSatSolver (show solver) -- | Add a constraint. assert :: MonadBoolector m => Node -> m () assert = liftBoolector1 B.assert -- | Add an assumption. assume :: MonadBoolector m => Node -> m () assume = liftBoolector1 B.assume -- | Determine if assumption node is a failed assumption. failed :: MonadBoolector m => Node -> m Bool failed = liftBoolector1 B.failed -- | Add all assumptions as assertions. fixateAssumptions :: MonadBoolector m => m () fixateAssumptions = liftBoolector0 B.fixateAssumptions -- | Resets all added assumptions. resetAssumptions :: MonadBoolector m => m () resetAssumptions = liftBoolector0 B.resetAssumptions -- | Solve an input formula. sat :: MonadBoolector m => m Status sat = liftBoolector0 B.sat -- | Push new context levels. push :: MonadBoolector m => Word -> m () push w = liftBoolector1 B.push (fromIntegral w) -- | Pop context levels. pop :: MonadBoolector m => Word -> m () pop w = liftBoolector1 B.pop (fromIntegral w) -- | Solve an input formula and limit the search by the number of lemmas -- generated and the number of conflicts encountered by the underlying -- SAT solver. limitedSat :: MonadBoolector m => Int -- ^ Limit for lemmas on demand (-1 unlimited). -> Int -- ^ Conflict limit for SAT solver (-1 unlimited). -> m Status limitedSat = liftBoolector2 B.limitedSat -- | Simplify current input formula. simplify :: MonadBoolector m => m Status simplify = liftBoolector0 B.sat -- -- Expressions -- -- | Like true and false bool :: MonadBoolector m => Bool -> m Node bool True = true bool False = false -- | Create constant true. This is represented by the bit vector constant one -- with bit width one. true :: MonadBoolector m => m Node true = liftBoolector0 B.true -- | Create bit vector constant zero with bit width one. false :: MonadBoolector m => m Node false = liftBoolector0 B.false -- | Create bit vector constant representing the bit vector @bits@. const :: MonadBoolector m => String -> m Node const = liftBoolector1 B.const -- | Create bit vector constant representing the decimal number @str@. constd :: MonadBoolector m => Sort -> String -> m Node constd = liftBoolector2 B.constd -- | Create bit vector constant representing the hexadecimal number @str@. consth :: MonadBoolector m => Sort -> String -> m Node consth = liftBoolector2 B.consth -- | Create bit vector constant zero of sort @sort@. zero :: MonadBoolector m => Sort -> m Node zero = liftBoolector1 B.zero -- | Create bit vector constant of sort @sort@, where each bit is set to one. ones :: MonadBoolector m => Sort -> m Node ones = liftBoolector1 B.ones -- | Create bit vector constant one of sort @sort@. one :: MonadBoolector m => Sort -> m Node one = liftBoolector1 B.one -- | Create bit vector constant representing the unsigned integer @u@ of -- sort @sort@. -- -- The constant is obtained by either truncating bits or by unsigned extension -- (padding with zeroes). unsignedInt :: MonadBoolector m => Integer -> Sort -> m Node unsignedInt i sort = liftBoolector2 B.unsignedInt (fromIntegral i) sort -- | Create bit vector constant representing the signed integer @i@ of sort -- @sort@. -- -- The constant is obtained by either truncating bits or by -- signed extension (padding with ones). signedInt :: MonadBoolector m => Integer -> Sort -> m Node signedInt i sort = liftBoolector2 B.int (fromIntegral i) sort -- | Create a bit vector variable of sort @sort@. var :: MonadBoolector m => Sort -> String -> m Node var = createNamedNode B.var -- | Create the one's complement of bit vector @node@. not :: MonadBoolector m => Node -> m Node not = liftBoolector1 B.not -- | Create the two's complement of bit vector @node@. neg :: MonadBoolector m => Node -> m Node neg = liftBoolector1 B.neg -- | Create *or* reduction of node @node@. -- -- All bits of node @node@ are combined by a Boolean *or*. redor :: MonadBoolector m => Node -> m Node redor = liftBoolector1 B.redor -- | Create *xor* reduction of node @node@. -- -- All bits of @node@ are combined by a Boolean *xor*. redxor :: MonadBoolector m => Node -> m Node redxor = liftBoolector1 B.redxor -- | Create *and* reduction of node @node@. -- -- All bits of @node@ are combined by a Boolean *and*. redand :: MonadBoolector m => Node -> m Node redand = liftBoolector1 B.redand -- | Create a bit vector slice of @node@ from index @upper@ to index @lower@. slice :: MonadBoolector m => Node -- ^ Bit vector node. -> Word -- ^ Upper index which must be greater than or equal to zero, and less than the bit width of @node@. -> Word -- ^ Lower index which must be greater than or equal to zero, and less than or equal to @upper@. -> m Node slice n u l = (liftBoolector3 B.slice) n (fromIntegral u) (fromIntegral l) -- | Create unsigned extension. -- -- The bit vector @node@ is padded with @width@ * zeroes. uext :: MonadBoolector m => Node -> Word -> m Node uext n w = (liftBoolector2 B.uext) n $ fromIntegral w -- | Create signed extension. -- -- The bit vector @node@ is padded with @width@ bits where the value -- depends on the value of the most significant bit of node @n@. sext :: MonadBoolector m => Node -> Word -> m Node sext n w = liftBoolector2 B.sext n (fromIntegral w) -- | Create the concatenation of two bit vectors. concat :: MonadBoolector m => Node -> Node -> m Node concat = liftBoolector2 B.concat -- | Create boolean implication. implies :: MonadBoolector m => Node -> Node -> m Node implies = liftBoolector2 B.implies -- | Create Boolean equivalence. iff :: MonadBoolector m => Node -> Node -> m Node iff = liftBoolector2 B.iff -- | Create bit vector or array equality. -- -- Both operands are either bit vectors with the same bit width or arrays -- of the same type. eq :: MonadBoolector m => Node -> Node -> m Node eq = liftBoolector2 B.eq -- | Create bit vector or array inequality. -- -- Both operands are either bit vectors with the same bit width or arrays -- of the same type. ne :: MonadBoolector m => Node -> Node -> m Node ne = liftBoolector2 B.ne -- | Create an if-then-else. -- -- If condition @n_cond@ is true, then @n_then@ is returned, else @n_else@ -- is returned. -- Nodes @n_then@ and @n_else@ must be either both arrays or both bit vectors. cond :: MonadBoolector m => Node -- ^ Condition -> Node -- ^ Then node -> Node -- ^ Else node -> m Node cond = liftBoolector3 B.cond -- -- Bit-wise operations. -- -- | Create a bit vector *xor*. xor :: MonadBoolector m => Node -> Node -> m Node xor = liftBoolector2 B.xor -- | Create a bit vector *xnor*. xnor :: MonadBoolector m => Node -> Node -> m Node xnor = liftBoolector2 B.xnor -- | Create a bit vector *and*. and :: MonadBoolector m => Node -> Node -> m Node and = liftBoolector2 B.and -- | Create a bit vector *nand*. nand :: MonadBoolector m => Node -> Node -> m Node nand = liftBoolector2 B.nand -- | Create a bit vector *or*. or :: MonadBoolector m => Node -> Node -> m Node or = liftBoolector2 B.or -- | Create a bit vector *nor*. nor :: MonadBoolector m => Node -> Node -> m Node nor = liftBoolector2 B.nor -- | Create a logical shift left. -- -- Given node @n1@, the value it represents is the number of zeroes shifted -- into node @n0@ from the right. sll :: MonadBoolector m => Node -- ^ First bit vector operand where the bit width is a power of two and greater than 1. -> Node -- ^ Second bit vector operand with bit width log2 of the bit width of @n0@. -> m Node sll = liftBoolector2 B.sll -- | Create a logical shift right. -- -- Given node @n1@, the value it represents is the number of zeroes shifted -- into node @n0@ from the left. srl :: MonadBoolector m => Node -- ^ First bit vector operand where the bit width is a power of two and greater than 1. -> Node -- ^ Second bit vector operand with bit width log2 of the bit width of @n0@. -> m Node srl = liftBoolector2 B.srl -- | Create an arithmetic shift right. -- -- Analogously to 'srl', but whether zeroes or ones are shifted in depends on -- the most significant bit of @n0@. sra :: MonadBoolector m => Node -- ^ First bit vector operand where the bit width is a power of two and greater than 1. -> Node -- ^ Second bit vector operand with bit width log2 of the bit width of @n0@. -> m Node sra = liftBoolector2 B.sra -- | Create a rotate left. -- -- Given bit vector node @n1@, the value it represents is the number of bits -- by which node @n0@ is rotated to the left. rol :: MonadBoolector m => Node -- ^ First bit vector operand where the bit width is a power of two and greater than 1. -> Node -- ^ Second bit vector operand with bit width log2 of the bit width of @n0@. -> m Node rol = liftBoolector2 B.rol -- | Create a rotate right. -- -- Given bit vector node @n1@, the value it represents is the number of bits by -- which node @n0@ is rotated to the right. ror :: MonadBoolector m => Node -- ^ First bit vector operand where the bit width is a power of two and greater than 1. -> Node -- ^ Second bit vector operand with bit width log2 of the bit width of @n0@. -> m Node ror = liftBoolector2 B.ror -- -- Arithmetic operations. -- -- | Create bit vector addition. add :: MonadBoolector m => Node -> Node -> m Node add = liftBoolector2 B.add -- | Create an unsigned bit vector addition overflow detection. uaddo :: MonadBoolector m => Node -> Node -> m Node uaddo = liftBoolector2 B.uaddo -- | Create a signed bit vector addition overflow detection. saddo :: MonadBoolector m => Node -> Node -> m Node saddo = liftBoolector2 B.saddo -- | Create bit vector expression that increments bit vector @node@ by one. inc :: Node -> Boolector Node inc = liftBoolector1 B.inc -- | Create a bit vector subtraction. sub :: MonadBoolector m => Node -> Node -> m Node sub = liftBoolector2 B.sub -- | Create an unsigned bit vector subtraction overflow detection. usubo :: MonadBoolector m => Node -> Node -> m Node usubo = liftBoolector2 B.usubo -- | Create a signed bit vector subtraction overflow detection. ssubo :: MonadBoolector m => Node -> Node -> m Node ssubo = liftBoolector2 B.ssubo -- | Create bit vector expression that decrements bit vector @node@ by one. dec :: MonadBoolector m => Node -> m Node dec = liftBoolector1 B.dec -- | Create a bitvector multiplication. mul :: MonadBoolector m => Node -> Node -> m Node mul = liftBoolector2 B.mul -- | Create an unsigned bit vector multiplication overflow detection. umulo :: MonadBoolector m => Node -> Node -> m Node umulo = liftBoolector2 B.umulo -- | Create signed multiplication overflow detection. smulo :: MonadBoolector m => Node -> Node -> m Node smulo = liftBoolector2 B.smulo -- | Create unsigned division. udiv :: MonadBoolector m => Node -> Node -> m Node udiv = liftBoolector2 B.udiv -- | Create signed division. sdiv :: MonadBoolector m => Node -> Node -> m Node sdiv = liftBoolector2 B.sdiv -- | Create a signed bit vector division overflow detection. sdivo :: MonadBoolector m => Node -> Node -> m Node sdivo = liftBoolector2 B.sdivo -- | Create an unsigned remainder. urem :: MonadBoolector m => Node -> Node -> m Node urem = liftBoolector2 B.urem -- | Create a signed remainder. srem :: MonadBoolector m => Node -> Node -> m Node srem = liftBoolector2 B.srem -- | Create a, signed remainder where its sign matches the sign of the divisor. smod :: MonadBoolector m => Node -> Node -> m Node smod = liftBoolector2 B.smod -- -- Comparison operations. -- -- | Create an unsigned less than. ult :: MonadBoolector m => Node -> Node -> m Node ult = liftBoolector2 B.ult -- | Create a signed less than. slt :: MonadBoolector m => Node -> Node -> m Node slt = liftBoolector2 B.slt -- | Create an unsigned less than or equal. ulte :: MonadBoolector m => Node -> Node -> m Node ulte = liftBoolector2 B.ulte -- | Create a signed less than or equal. slte :: MonadBoolector m => Node -> Node -> m Node slte = liftBoolector2 B.slte -- | Create an unsigned greater than. ugt :: MonadBoolector m => Node -> Node -> m Node ugt = liftBoolector2 B.ugt -- | Create a signed greater than. sgt :: MonadBoolector m => Node -> Node -> m Node sgt = liftBoolector2 B.sgt -- | Create an unsigned greater than or equal. ugte :: MonadBoolector m => Node -> Node -> m Node ugte = liftBoolector2 B.ugte -- | Create a signed greater than or equal. sgte :: MonadBoolector m => Node -> Node -> m Node sgte = liftBoolector2 B.sgte -- -- Array operations -- -- | Create a one-dimensional bit vector array with sort @sort@. -- -- The name must be unique. array :: MonadBoolector m => Sort -> String -> m Node array = createNamedNode B.array -- | Create a read on array @n_array@ at position @n_index@. read :: MonadBoolector m => Node -- ^ Array operand. -> Node -- ^ Bit vector index. The bit width of @n_index@ must have the same bit width as the indices of @n_array@. -> m Node read = liftBoolector2 B.read -- | Create a write on array @n_array@ at position @n_index@ with value -- @n_value@. -- -- The array is updated at exactly one position, all other elements remain -- unchanged. The bit width of @n_index@ must be the same as the bit width of -- the indices of @n_array@. The bit width of @n_value@ must be the same as -- the bit width of the elements of @n_array@. write :: MonadBoolector m => Node -- ^ Array operand. -> Node -- ^ Bit vector index. -> Node -- ^ Bit vector value. -> m Node write = liftBoolector3 B.write -- -- Functions -- -- | Create an uninterpreted function with sort @sort@. -- -- The name must be unique. uf :: MonadBoolector m => Sort -> String -> m Node uf = createNamedNode B.uf -- | Create function parameter of sort @sort@. -- -- This kind of node is used to create parameterized expressions, which are -- used to create functions. Once a parameter is bound to a function, it -- cannot be re-used in other functions. param :: MonadBoolector m => Sort -> String -> m Node param = liftBoolector2 B.param -- | Create a function with body @node@ parameterized over parameters -- @param_nodes@. -- -- This kind of node is similar to macros in the SMT-LIB standard 2.0. -- Note that as soon as a parameter is bound to a function, it can not be -- reused in other functions. -- Call a function via 'apply'. fun :: MonadBoolector m => [Node] -- ^ Parameters of function. -> Node -- ^ Function body parameterized over @param_nodes@. -> m Node fun = liftBoolector2 B.fun -- | Create a function application on function @n_fun@ with arguments -- @arg_nodes@. apply :: MonadBoolector m => [Node] -- ^ Arguments to be applied. -> Node -- ^ Number of arguments to be applied. -> m Node apply = liftBoolector2 B.apply -- -- Quantified terms -- -- | Create a universally quantified term. forall :: MonadBoolector m => [Node] -- ^ Quantified variables -> Node -- ^ Term where variables may occur -> m Node forall = liftBoolector2 B.forall -- | Create an existentially quantifed term. exists :: MonadBoolector m => [Node] -- ^ Quantified variables -> Node -- ^ Term where variables may occur -> m Node exists = liftBoolector2 B.exists -- -- Accessors -- -- | Get the sort of given @node@. The result does not have to be released. getSort :: MonadBoolector m => Node -> m Sort getSort = liftBoolector1 B.getSort -- | Get the domain sort of given function node @node@. -- -- The result does not have to be released. funGetDomainSort :: MonadBoolector m => Node -> m Sort funGetDomainSort = liftBoolector1 B.funGetDomainSort -- | Get the codomain sort of given function node @node@. -- -- The result does not have to be released. funGetCodomainSort :: MonadBoolector m => Node -> m Sort funGetCodomainSort = liftBoolector1 B.funGetCodomainSort -- | Get the arity of function node. funGetArity :: MonadBoolector m => Node -> m Word funGetArity n = fromIntegral `liftM` liftBoolector1 B.getFunArity n -- | Get the symbol of an expression. getSymbol :: MonadBoolector m => Node -> m String getSymbol = liftBoolector1 B.getSymbol -- | Get the bit width of an expression. -- -- If the expression is an array, it returns the bit width of the array -- elements. -- If the expression is a function, it returns the bit width of the function's -- return value. getWidth :: MonadBoolector m => Node -> m Word getWidth n = fromIntegral `liftM` liftBoolector1 B.getWidth n -- | Get the bit width of indices of @n_array@. getIndexWidth :: MonadBoolector m => Node -> m Word getIndexWidth n = fromIntegral `liftM` liftBoolector1 B.getIndexWidth n -- | Determine if given node is a constant node. isConst :: MonadBoolector m => Node -> m Bool isConst = liftBoolector1 B.isConst -- | Determine if given node is a bit vector variable. isVar :: MonadBoolector m => Node -> m Bool isVar = liftBoolector1 B.isVar -- | Determine if given node is an array node. isArray :: MonadBoolector m => Node -> m Bool isArray = liftBoolector1 B.isArray -- | Determine if given node is an array node. isArrayVar :: MonadBoolector m => Node -> m Bool isArrayVar = liftBoolector1 B.isArrayVar -- | Determine if given node is a parameter node. isParam :: MonadBoolector m => Node -> m Bool isParam = liftBoolector1 B.isParam -- | Determine if given parameter node is bound by a function. isBoundParam :: MonadBoolector m => Node -> m Bool isBoundParam = liftBoolector1 B.isBoundParam -- | Determine if given node is an uninterpreted function node. isUf :: MonadBoolector m => Node -> m Bool isUf = liftBoolector1 B.isUf -- | Determine if given node is a function node. isFun :: MonadBoolector m => Node -> m Bool isFun = liftBoolector1 B.isFun -- -- Models. -- -- | Generate an assignment string for bit vector expression if -- boolector_sat has returned BOOLECTOR_SAT and model generation has been -- enabled. -- -- The expression can be an arbitrary bit vector expression which -- occurs in an assertion or current assumption. The assignment string has to -- be freed by 'freeBvAssignment'. bvAssignment :: MonadBoolector m => Node -> m String bvAssignment = liftBoolector1 B.bvAssignment -- | Get unsigned integer value from model. unsignedBvAssignment :: MonadBoolector m => Node -> m Integer unsignedBvAssignment node = do str <- bvAssignment node when (Prelude.not $ all isDigit str) $ error $ "getModelVal: not numeric: " ++ str liftIO $ evaluate $ foldl (\ n c -> 2 * n + Prelude.read [c]) 0 str -- | Get signed integer value from model. signedBvAssignment :: MonadBoolector m => Node -> m Integer signedBvAssignment node = do val <- unsignedBvAssignment node w <- getWidth node let max_signed_w = 2 ^ pred w return $ if val >= max_signed_w then val - (2*max_signed_w) else val -- | Get Boolean value from model. boolAssignment :: MonadBoolector m => Node -> m Bool boolAssignment node = do str <- bvAssignment node liftIO $ evaluate $ case str of "0" -> False "1" -> True _ -> error $ "boolAssignment: not boolean: " ++ str -- -- Sorts -- -- | Create Boolean sort. boolSort :: Boolector Sort boolSort = do sc <- getSortCache case scBool sc of Just srt -> return srt _ -> do srt <- liftBoolector0 B.boolSort setSortCache $ sc { scBool = Just srt } return srt -- | Create bit vector sort of bit width @width@. bitvecSort :: MonadBoolector m => Word -> m Sort bitvecSort wnr = do sc <- getSortCache let bvMap = scBitVec sc case IntMap.lookup nr bvMap of Just srt -> return srt _ -> do srt <- liftBoolector1 B.bitvecSort nr setSortCache $ sc { scBitVec = IntMap.insert nr srt bvMap } return srt where nr = fromIntegral wnr -- | Create function sort. funSort :: MonadBoolector m => [Sort] -> Sort -> m Sort funSort args ret = do sc <- getSortCache let funMap = scFun sc case Map.lookup (ret, args) funMap of Just srt -> return srt _ -> do srt <- liftBoolector2 B.funSort args ret setSortCache $ sc { scFun = Map.insert (ret, args) srt funMap } return srt -- | Create array sort. arraySort :: MonadBoolector m => Sort -> Sort -> m Sort arraySort dom rng = do sc <- getSortCache let arrMap = scArray sc case Map.lookup (dom, rng) arrMap of Just srt -> return srt _ -> do srt <- liftBoolector2 B.arraySort dom rng setSortCache $ sc { scArray = Map.insert (dom, rng) srt arrMap } return srt -- | Determine if @n0@ and @n1@ have the same sort or not. isEqualSort :: MonadBoolector m => Node -> Node -> m Bool isEqualSort = liftBoolector2 B.isEqualSort -- | Determine if @sort@ is an array sort. isArraySort :: MonadBoolector m => Sort -> m Bool isArraySort = liftBoolector1 B.isArraySort -- | Determine if @sort@ is a bit-vector sort. isBitvecSort :: MonadBoolector m => Sort -> m Bool isBitvecSort = liftBoolector1 B.isBitvecSort -- | Determine if @sort@ is a function sort. isFunSort :: MonadBoolector m => Sort -> m Bool isFunSort = liftBoolector1 B.isFunSort -- | Check if sorts of given arguments matches the function signature. -- Returns 'Nothing' if all sorts are correct; otherwise it returns the -- position of the incorrect argument. funSortCheck :: MonadBoolector m => [Node] -> Node -> m (Maybe Int) funSortCheck = liftBoolector2 B.funSortCheck -- -- Dumping -- -- | Recursively dump @node@ to file in BTOR_ format. dumpBtorNode :: MonadBoolector m => FilePath -> Node -> m () dumpBtorNode path node = do file <- liftIO $ B.fopen path "w" liftBoolector2 B.dumpBtorNode file node -- | Recursively dump @node@ to file in SMT-LIB v2 format. dumpSmt2Node :: MonadBoolector m => FilePath -> Node -> m () dumpSmt2Node path node = do file <- liftIO $ B.fopen path "w" liftBoolector2 B.dumpSmt2Node file node -- | Dump formula to file in BTOR_ format. dumpBtor :: MonadBoolector m => FilePath -> m () dumpBtor path = do file <- liftIO $ B.fopen path "w" liftBoolector1 B.dumpBtor file -- | Dumps formula to file in SMT-LIB v2 format. dumpSmt2 :: MonadBoolector m => FilePath -> m () dumpSmt2 path = do file <- liftIO $ B.fopen path "w" liftBoolector1 B.dumpSmt2 file -- -- Helpers -- liftBoolector0 :: MonadBoolector m => (B.Btor -> IO a) -> m a liftBoolector0 f = do s <- getBoolectorState liftIO $ f (unBoolectorState s) liftBoolector1 :: MonadBoolector m => (B.Btor -> a -> IO b) -> a -> m b liftBoolector1 f x1 = do s <- getBoolectorState liftIO $ f (unBoolectorState s) x1 liftBoolector2 :: MonadBoolector m => (B.Btor -> a -> b -> IO c) -> a -> b -> m c liftBoolector2 f x1 x2 = do s <- getBoolectorState liftIO $ f (unBoolectorState s) x1 x2 liftBoolector3 :: MonadBoolector m => (B.Btor -> a -> b -> c -> IO d) -> a -> b -> c -> m d liftBoolector3 f x1 x2 x3 = do s <- getBoolectorState liftIO $ f (unBoolectorState s) x1 x2 x3 -- -- Solver cache -- -- | Cache sorts and variables. data BoolectorCache = BoolectorCache { sortCache :: SortCache , varCache :: VarCache } -- | Empty boolector cache. emptyBoolectorCache :: BoolectorCache emptyBoolectorCache = BoolectorCache emptySortCache Map.empty -- | Cache sorts. data SortCache = SortCache { scBool :: Maybe Sort -- ^ Bool sort , scBitVec :: IntMap Sort -- ^ BitVector sorts , scFun :: Map (Sort, [Sort]) Sort -- ^ Function sorts , scArray :: Map (Sort, Sort) Sort -- ^ Array sorts } -- | Empty sort cache. emptySortCache :: SortCache emptySortCache = SortCache Nothing IntMap.empty Map.empty Map.empty -- | Get the sort cache from the underlying state. getSortCache :: MonadBoolector m => m SortCache getSortCache = (sortCache . unBoolectorCache) `liftM` getBoolectorState -- | Set the sort cache into the underlying state. setSortCache :: MonadBoolector m => SortCache -> m () setSortCache sc = do s0 <- getBoolectorState putBoolectorState $ s0 { unBoolectorCache = (unBoolectorCache s0) { sortCache = sc } } -- | Variable and uninterpreted function cache. type VarCache = Map (String, Sort) Node -- | Get the variable cache from the underlying state. getVarCache :: MonadBoolector m => m VarCache getVarCache = (varCache . unBoolectorCache) `liftM` getBoolectorState -- | Set the variable cache from into underlying state. setVarCache :: MonadBoolector m => VarCache -> m () setVarCache vc = do s0 <- getBoolectorState putBoolectorState $ s0 { unBoolectorCache = (unBoolectorCache s0) { varCache = vc } } -- | Create a new named node given a constructor or return it from variable -- cache. The name must be unique. createNamedNode :: MonadBoolector m => (B.Btor -> Sort -> String -> IO Node) -> Sort -> String -> m Node createNamedNode ctor sort name = do vc <- getVarCache case Map.lookup (name, sort) vc of Just srt -> return srt _ -> do node <- liftBoolector2 ctor sort name setVarCache $ Map.insert (name, sort) node vc return node