module Bulletproofs.RangeProof.Internal ( RangeProof(..), RangeProofError(..), LRPolys(..), TPoly(..), delta, checkRange, reversedEncodeBit, complementaryVector, chooseBlindingVectors, commitBitVectors, computeLRCommitment, obfuscateEncodedBits, obfuscateEncodedBitsSingle, ) where import Protolude import Numeric (showIntAtBase) import Data.Char (intToDigit, digitToInt) import Crypto.Random.Types (MonadRandom(..)) import qualified Crypto.PubKey.ECC.Generate as Crypto import qualified Crypto.PubKey.ECC.Prim as Crypto import qualified Crypto.PubKey.ECC.Types as Crypto import Bulletproofs.Utils import Bulletproofs.Curve import Bulletproofs.Fq as Fq import Bulletproofs.InnerProductProof.Internal data RangeProof = RangeProof { tBlinding :: Fq -- ^ Blinding factor of the T1 and T2 commitments, -- combined into the form required to make the committed version of the x-polynomial add up , mu :: Fq -- ^ Blinding factor required for the Verifier to verify commitments A, S , t :: Fq -- ^ Dot product of vectors l and r that prove knowledge of the value in range -- t = t(x) = l(x) · r(x) , aCommit :: Crypto.Point -- ^ Commitment to aL and aR, where aL and aR are vectors of bits -- such that aL · 2^n = v and aR = aL − 1^n . -- A = α · H + aL · G + aR · H , sCommit :: Crypto.Point -- ^ Commitment to new vectors sL, sR, created at random by the Prover , t1Commit :: Crypto.Point -- ^ Pedersen commitment to coefficient t1 , t2Commit :: Crypto.Point -- ^ Pedersen commitment to coefficient t2 , productProof :: InnerProductProof -- ^ Inner product argument to prove that a commitment P -- has vectors l, r ∈ Z^n for which P = l · G + r · H + ( l, r ) · U } deriving (Show, Eq) data RangeProofError = UpperBoundTooLarge Integer -- ^ The upper bound of the range is too large | ValueNotInRange Integer -- ^ Value is not within the range required | NNotPowerOf2 Integer -- ^ Dimension n is required to be a power of 2 deriving (Show) ----------------------------- -- Polynomials ----------------------------- data LRPolys = LRPolys { l0 :: [Fq] , l1 :: [Fq] , r0 :: [Fq] , r1 :: [Fq] } data TPoly = TPoly { t0 :: Fq , t1 :: Fq , t2 :: Fq } ----------------------------- -- Internal functions ----------------------------- -- | Encode the value v into a bit representation. Let aL be a vector -- of bits such that = v (put more simply, the components of a L are the -- binary digits of v). encodeBit :: Integer -> Fq -> [Fq] encodeBit n (Fq v) = fillWithZeros n $ Fq.new . fromIntegral . digitToInt <$> showIntAtBase 2 intToDigit v "" -- | Bits of v reversed. -- v = = a_0 * 2^0 + ... + a_n-1 * 2^(n-1) reversedEncodeBit :: Integer -> Fq -> [Fq] reversedEncodeBit n = reverse . encodeBit n -- | In order to prove that v is in range, each element of aL is either 0 or 1. -- We construct a “complementary” vector aR = aL − 1^n and require that -- aL ◦ aR = 0 hold. complementaryVector :: Num a => [a] -> [a] complementaryVector aL = (\vi -> vi - 1) <$> aL -- | Add non-relevant zeros to a vector to match the size -- of the other vectors used in the protocol fillWithZeros :: Integer -> [Fq] -> [Fq] fillWithZeros n aL = zeros ++ aL where zeros = replicate (fromInteger n - length aL) (Fq 0) -- | Obfuscate encoded bits with challenges y and z. -- z^2 * + z * + = (z^2) * v -- The property holds because = 0 and = 0 obfuscateEncodedBits :: Integer -> [Fq] -> [Fq] -> Fq -> Fq -> Fq obfuscateEncodedBits n aL aR y z = (fqSquare z * dotp aL (powerVector 2 n)) + (z * dotp ((aL `fqSubV` powerVector 1 n) `fqSubV` aR) yN) + dotp (hadamardp aL aR) yN where yN = powerVector y n -- Convert obfuscateEncodedBits into aCommit sCommitingle inner product. -- We can afford for this factorization to leave terms “dangling”, but -- what’s important is that the aL , aR terms be kept inside -- (since they can’t be shared with the Verifier): -- = z 2 v + δ(y, z) obfuscateEncodedBitsSingle :: Integer -> [Fq] -> [Fq] -> Fq -> Fq -> Fq obfuscateEncodedBitsSingle n aL aR y z = dotp (aL `fqSubV` z1n) (hadamardp (powerVector y n) (aR `fqAddV` z1n) `fqAddV` ((*) (fqSquare z) <$> powerVector 2 n)) where z1n = (*) z <$> powerVector 1 n -- | We need to blind the vectors aL, aR to make the proof zero knowledge. -- The Prover creates randomly vectors sL and sR. On creating these, the -- Prover can send commitments to these vectors; -- these are properly blinded vector Pedersen commitments: commitBitVectors :: MonadRandom m => Fq -> Fq -> [Fq] -> [Fq] -> [Fq] -> [Fq] -> m (Crypto.Point, Crypto.Point) commitBitVectors aBlinding sBlinding aL aR sL sR = do let aLG = foldl' addP Crypto.PointO ( zipWith mulP aL gs ) aRH = foldl' addP Crypto.PointO ( zipWith mulP aR hs ) sLG = foldl' addP Crypto.PointO ( zipWith mulP sL gs ) sRH = foldl' addP Crypto.PointO ( zipWith mulP sR hs ) aBlindingH = mulP aBlinding h sBlindingH = mulP sBlinding h -- Commitment to aL and aR let aCommit = aBlindingH `addP` aLG `addP` aRH -- Commitment to sL and sR let sCommit = sBlindingH `addP` sLG `addP` sRH pure (aCommit, sCommit) chooseBlindingVectors :: MonadRandom m => Integer -> m ([Fq], [Fq]) chooseBlindingVectors n = do sL <- replicateM (fromInteger n) (Fq.random n) sR <- replicateM (fromInteger n) (Fq.random n) pure (sL, sR) -- | (z − z^2) * <1^n, y^n> − z^3 * <1^n, 2^n> delta :: Integer -> Fq -> Fq -> Fq delta n y z = ((z - Fq.fqSquare z) * dotp (powerVector 1 n) (powerVector y n)) - (Fq.fqCube z * dotp (powerVector 1 n) (powerVector 2 n)) -- | Check that a value is in aCommit sCommitpecific range checkRange :: Integer -> Integer -> Bool checkRange n v = v >= 0 && v < 2 ^ n -- | Compute commitment of linear vector polynomials l and r -- P = A + xS − zG + (z*y^n + z^2 * 2^n) * hs' computeLRCommitment :: Integer -> Crypto.Point -> Crypto.Point -> Fq -> Fq -> Fq -> Fq -> Fq -> Fq -> [Crypto.Point] -> Crypto.Point computeLRCommitment n aCommit sCommit t tBlinding mu x y z hs' = aCommit `addP` (x `mulP` sCommit) `addP` Crypto.pointNegate curve (z `mulP` gsSum) `addP` foldl' addP Crypto.PointO (zipWith mulP hExp hs') `addP` Crypto.pointNegate curve (mu `mulP` h) `addP` (t `mulP` u) where gsSum = foldl' addP Crypto.PointO (take (fromIntegral n) gs) hExp = ((*) z <$> powerVector y n) `fqAddV` ((*) (fqSquare z) <$> powerVector 2 n) uChallenge = shamirU tBlinding mu t u = uChallenge `mulP` g