| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
Bulletproofs.MultiRangeProof.Verifier
Synopsis
- verifyProof :: KnownNat p => Integer -> [Point] -> RangeProof (PrimeField p) -> Bool
- verifyTPoly :: KnownNat p => Integer -> [Point] -> RangeProof (PrimeField p) -> PrimeField p -> PrimeField p -> PrimeField p -> Bool
- verifyLRCommitment :: KnownNat p => Integer -> Integer -> RangeProof (PrimeField p) -> PrimeField p -> PrimeField p -> PrimeField p -> Bool
Documentation
Arguments
| :: KnownNat p | |
| => Integer | Range upper bound |
| -> [Point] | Commitments of in-range values |
| -> RangeProof (PrimeField p) | Proof that a secret committed value lies in a certain interval |
| -> Bool |
Verify that a commitment was computed from a value in a given range
Arguments
| :: KnownNat p | |
| => Integer | Dimension n of the vectors |
| -> [Point] | Commitments of in-range values |
| -> RangeProof (PrimeField p) | Proof that a secret committed value lies in a certain interval |
| -> PrimeField p | Challenge x |
| -> PrimeField p | Challenge y |
| -> PrimeField p | Challenge z |
| -> Bool |
Verify the constant term of the polynomial t t = t(x) = t0 + t1*x + t2*x^2 This is what binds the proof to the actual original Pedersen commitment V to the actual value
Arguments
| :: KnownNat p | |
| => Integer | Dimension n of the vectors |
| -> Integer | |
| -> RangeProof (PrimeField p) | Proof that a secret committed value lies in a certain interval |
| -> PrimeField p | Challenge x |
| -> PrimeField p | Challenge y |
| -> PrimeField p | Challenge z |
| -> Bool |
Verify the inner product argument for the vectors l and r that form t