{-# OPTIONS -fglasgow-exts -cpp #-} module Language.Cap.Interpret.Parse (Program,RewriteRule(..),Term(..) ,parseProgram,parseTerm ,functionName,showRule) where import Language.Cap.Interpret.Pretty import Data.Char #if __GLASGOW_HASKELL__ >= 503 import Data.Array #else import Array #endif #if __GLASGOW_HASKELL__ >= 503 import GHC.Exts #else import GlaExts #endif -- parser produced by Happy Version 1.17 newtype HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 = HappyAbsSyn HappyAny #if __GLASGOW_HASKELL__ >= 607 type HappyAny = GHC.Exts.Any #else type HappyAny = forall a . a #endif happyIn5 :: t5 -> (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) happyIn5 x = unsafeCoerce# x {-# INLINE happyIn5 #-} happyOut5 :: (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) -> t5 happyOut5 x = unsafeCoerce# x {-# INLINE happyOut5 #-} happyIn6 :: t6 -> (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) happyIn6 x = unsafeCoerce# x {-# INLINE happyIn6 #-} happyOut6 :: (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) -> t6 happyOut6 x = unsafeCoerce# x {-# INLINE happyOut6 #-} happyIn7 :: t7 -> (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) happyIn7 x = unsafeCoerce# x {-# INLINE happyIn7 #-} happyOut7 :: (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) -> t7 happyOut7 x = unsafeCoerce# x {-# INLINE happyOut7 #-} happyIn8 :: t8 -> (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) happyIn8 x = unsafeCoerce# x {-# INLINE happyIn8 #-} happyOut8 :: (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) -> t8 happyOut8 x = unsafeCoerce# x {-# INLINE happyOut8 #-} happyIn9 :: t9 -> (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) happyIn9 x = unsafeCoerce# x {-# INLINE happyIn9 #-} happyOut9 :: (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) -> t9 happyOut9 x = unsafeCoerce# x {-# INLINE happyOut9 #-} happyIn10 :: t10 -> (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) happyIn10 x = unsafeCoerce# x {-# INLINE happyIn10 #-} happyOut10 :: (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) -> t10 happyOut10 x = unsafeCoerce# x {-# INLINE happyOut10 #-} happyIn11 :: t11 -> (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) happyIn11 x = unsafeCoerce# x {-# INLINE happyIn11 #-} happyOut11 :: (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) -> t11 happyOut11 x = unsafeCoerce# x {-# INLINE happyOut11 #-} happyIn12 :: t12 -> (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) happyIn12 x = unsafeCoerce# x {-# INLINE happyIn12 #-} happyOut12 :: (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) -> t12 happyOut12 x = unsafeCoerce# x {-# INLINE happyOut12 #-} happyIn13 :: t13 -> (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) happyIn13 x = unsafeCoerce# x {-# INLINE happyIn13 #-} happyOut13 :: (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) -> t13 happyOut13 x = unsafeCoerce# x {-# INLINE happyOut13 #-} happyIn14 :: t14 -> (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) happyIn14 x = unsafeCoerce# x {-# INLINE happyIn14 #-} happyOut14 :: (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) -> t14 happyOut14 x = unsafeCoerce# x {-# INLINE happyOut14 #-} happyIn15 :: t15 -> (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) happyIn15 x = unsafeCoerce# x {-# INLINE happyIn15 #-} happyOut15 :: (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) -> t15 happyOut15 x = unsafeCoerce# x {-# INLINE happyOut15 #-} happyInTok :: Token -> (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) happyInTok x = unsafeCoerce# x {-# INLINE happyInTok #-} happyOutTok :: (HappyAbsSyn t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15) -> Token happyOutTok x = unsafeCoerce# x {-# INLINE happyOutTok #-} happyActOffsets :: HappyAddr happyActOffsets = HappyA# "\x56\x00\x4e\x00\x1c\x00\x00\x00\x47\x00\x29\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x44\x00\x1d\x00\x56\x00\x22\x00\x00\x00\x56\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x44\x00\x3d\x00\x00\x00\x1a\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3a\x00\x00\x00\x0f\x00\x0c\x00\x00\x00\x00\x00\x0d\x00\x04\x00\x02\x00\x33\x00\x30\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf9\xff\x00\x00"# happyGotoOffsets :: HappyAddr happyGotoOffsets = HappyA# "\x68\x00\x4c\x00\x00\x00\x00\x00\x7e\x00\x7a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7c\x00\x00\x00\x65\x00\x7b\x00\x00\x00\x62\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x77\x00\x5c\x00\x00\x00\x73\x00\x72\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x6e\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x59\x00\x64\x00\x69\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyDefActions :: HappyAddr happyDefActions = HappyA# "\x00\x00\x00\x00\x00\x00\xfd\xff\xe7\xff\x00\x00\x00\x00\xe6\xff\xec\xff\xe5\xff\x00\x00\x00\x00\x00\x00\x00\x00\xf8\xff\x00\x00\xfc\xff\xf9\xff\xf6\xff\xf5\xff\xef\xff\xf4\xff\x00\x00\x00\x00\xfb\xff\x00\x00\x00\x00\xe3\xff\xe8\xff\xe2\xff\xea\xff\xe1\xff\xe0\xff\x00\x00\xed\xff\x00\x00\x00\x00\xe9\xff\xee\xff\x00\x00\x00\x00\xf1\xff\x00\x00\xfa\xff\x00\x00\xf2\xff\xf0\xff\xf7\xff\xe4\xff\xeb\xff\xf3\xff"# happyCheck :: HappyAddr happyCheck = HappyA# "\xff\xff\x08\x00\x01\x00\x02\x00\x03\x00\x01\x00\x02\x00\x03\x00\x07\x00\x08\x00\x08\x00\x07\x00\x08\x00\x01\x00\x02\x00\x03\x00\x01\x00\x02\x00\x03\x00\x07\x00\x08\x00\x08\x00\x07\x00\x08\x00\x01\x00\x02\x00\x03\x00\x01\x00\x02\x00\x03\x00\x07\x00\x08\x00\x04\x00\x07\x00\x08\x00\x01\x00\x02\x00\x03\x00\x09\x00\xff\xff\x06\x00\x07\x00\x01\x00\x02\x00\x03\x00\x04\x00\xff\xff\xff\xff\x07\x00\x01\x00\x02\x00\x03\x00\x01\x00\x02\x00\x03\x00\x07\x00\xff\xff\xff\xff\x07\x00\x01\x00\x02\x00\x03\x00\x01\x00\x02\x00\x03\x00\x07\x00\xff\xff\xff\xff\x07\x00\x01\x00\x02\x00\x03\x00\x01\x00\x02\x00\x03\x00\x07\x00\xff\xff\xff\xff\x07\x00\x01\x00\x02\x00\x03\x00\x06\x00\xff\xff\x08\x00\x07\x00\x0a\x00\x01\x00\xff\xff\xff\xff\x04\x00\x05\x00\x03\x00\x04\x00\x05\x00\x03\x00\x04\x00\x05\x00\x00\x00\x01\x00\x02\x00\x00\x00\x01\x00\x02\x00\x00\x00\x01\x00\x02\x00\x07\x00\x03\x00\x09\x00\x05\x00\x03\x00\xff\xff\x05\x00\x07\x00\xff\xff\x09\x00\x07\x00\x06\x00\x09\x00\x08\x00\x07\x00\x07\x00\x09\x00\x09\x00\x06\x00\x03\x00\x08\x00\x05\x00\x07\x00\x06\x00\x09\x00\x08\x00\x07\x00\xff\xff\x09\x00\xff\xff\xff\xff\xff\xff"# happyTable :: HappyAddr happyTable = HappyA# "\x00\x00\xf0\xff\x14\x00\x15\x00\x16\x00\x14\x00\x15\x00\x16\x00\x18\x00\x33\x00\xef\xff\x18\x00\x2f\x00\x1e\x00\x1f\x00\x20\x00\x1e\x00\x1f\x00\x20\x00\x22\x00\x31\x00\x30\x00\x22\x00\x32\x00\x1e\x00\x1f\x00\x20\x00\x1e\x00\x1f\x00\x20\x00\x22\x00\x26\x00\x04\x00\x22\x00\x27\x00\x14\x00\x15\x00\x16\x00\xff\xff\x00\x00\x17\x00\x18\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x00\x00\x00\x00\x22\x00\x1e\x00\x1f\x00\x20\x00\x14\x00\x2a\x00\x16\x00\x22\x00\x00\x00\x00\x00\x2b\x00\x08\x00\x09\x00\x0a\x00\x14\x00\x2a\x00\x16\x00\x0b\x00\x00\x00\x00\x00\x2b\x00\x08\x00\x09\x00\x0a\x00\x1e\x00\x1f\x00\x20\x00\x0b\x00\x00\x00\x00\x00\x22\x00\x08\x00\x09\x00\x0a\x00\x04\x00\x00\x00\x05\x00\x0b\x00\x06\x00\x0f\x00\x00\x00\x00\x00\x04\x00\x10\x00\x27\x00\x2c\x00\x12\x00\x27\x00\x28\x00\x12\x00\x10\x00\x0c\x00\x0d\x00\x18\x00\x0c\x00\x0d\x00\x0b\x00\x0c\x00\x0d\x00\x1b\x00\x2d\x00\x1c\x00\x12\x00\x2d\x00\x00\x00\x12\x00\x1b\x00\x00\x00\x1c\x00\x1b\x00\x23\x00\x22\x00\x24\x00\x1b\x00\x1b\x00\x1c\x00\x22\x00\x04\x00\x11\x00\x2b\x00\x12\x00\x1b\x00\x19\x00\x1c\x00\x1a\x00\x1b\x00\x00\x00\x22\x00\x00\x00\x00\x00\x00\x00"# happyReduceArr = array (2, 31) [ (2 , happyReduce_2), (3 , happyReduce_3), (4 , happyReduce_4), (5 , happyReduce_5), (6 , happyReduce_6), (7 , happyReduce_7), (8 , happyReduce_8), (9 , happyReduce_9), (10 , happyReduce_10), (11 , happyReduce_11), (12 , happyReduce_12), (13 , happyReduce_13), (14 , happyReduce_14), (15 , happyReduce_15), (16 , happyReduce_16), (17 , happyReduce_17), (18 , happyReduce_18), (19 , happyReduce_19), (20 , happyReduce_20), (21 , happyReduce_21), (22 , happyReduce_22), (23 , happyReduce_23), (24 , happyReduce_24), (25 , happyReduce_25), (26 , happyReduce_26), (27 , happyReduce_27), (28 , happyReduce_28), (29 , happyReduce_29), (30 , happyReduce_30), (31 , happyReduce_31) ] happy_n_terms = 10 :: Int happy_n_nonterms = 11 :: Int happyReduce_2 = happySpecReduce_1 0# happyReduction_2 happyReduction_2 happy_x_1 = happyIn5 ([] ) happyReduce_3 = happySpecReduce_2 0# happyReduction_3 happyReduction_3 happy_x_2 happy_x_1 = case happyOut5 happy_x_2 of { happy_var_2 -> happyIn5 (happy_var_2 )} happyReduce_4 = happySpecReduce_2 0# happyReduction_4 happyReduction_4 happy_x_2 happy_x_1 = case happyOut6 happy_x_1 of { happy_var_1 -> case happyOut5 happy_x_2 of { happy_var_2 -> happyIn5 (happy_var_1 : happy_var_2 )}} happyReduce_5 = happySpecReduce_3 1# happyReduction_5 happyReduction_5 happy_x_3 happy_x_2 happy_x_1 = case happyOut7 happy_x_1 of { happy_var_1 -> case happyOut13 happy_x_3 of { happy_var_3 -> happyIn6 (Rule happy_var_1 happy_var_3 )}} happyReduce_6 = happySpecReduce_2 2# happyReduction_6 happyReduction_6 happy_x_2 happy_x_1 = case happyOut7 happy_x_1 of { happy_var_1 -> case happyOut8 happy_x_2 of { happy_var_2 -> happyIn7 (TApplication happy_var_1 happy_var_2 )}} happyReduce_7 = happySpecReduce_1 2# happyReduction_7 happyReduction_7 happy_x_1 = case happyOutTok happy_x_1 of { (TokenVariable happy_var_1) -> happyIn7 (TAtom happy_var_1 )} happyReduce_8 = happySpecReduce_3 3# happyReduction_8 happyReduction_8 happy_x_3 happy_x_2 happy_x_1 = case happyOut8 happy_x_2 of { happy_var_2 -> happyIn8 (happy_var_2 )} happyReduce_9 = happySpecReduce_1 3# happyReduction_9 happyReduction_9 happy_x_1 = case happyOut10 happy_x_1 of { happy_var_1 -> happyIn8 (happy_var_1 )} happyReduce_10 = happySpecReduce_1 3# happyReduction_10 happyReduction_10 happy_x_1 = case happyOutTok happy_x_1 of { (TokenVariable happy_var_1) -> happyIn8 (TVariable happy_var_1 )} happyReduce_11 = happySpecReduce_1 3# happyReduction_11 happyReduction_11 happy_x_1 = case happyOutTok happy_x_1 of { (TokenNumber happy_var_1) -> happyIn8 (TAtom happy_var_1 )} happyReduce_12 = happySpecReduce_3 4# happyReduction_12 happyReduction_12 happy_x_3 happy_x_2 happy_x_1 = case happyOut9 happy_x_2 of { happy_var_2 -> happyIn9 (happy_var_2 )} happyReduce_13 = happySpecReduce_2 4# happyReduction_13 happyReduction_13 happy_x_2 happy_x_1 = case happyOut9 happy_x_1 of { happy_var_1 -> case happyOut8 happy_x_2 of { happy_var_2 -> happyIn9 (TApplication happy_var_1 happy_var_2 )}} happyReduce_14 = happySpecReduce_1 4# happyReduction_14 happyReduction_14 happy_x_1 = case happyOutTok happy_x_1 of { (TokenConstructor happy_var_1) -> happyIn9 (TAtom happy_var_1 )} happyReduce_15 = happySpecReduce_3 5# happyReduction_15 happyReduction_15 happy_x_3 happy_x_2 happy_x_1 = case happyOut9 happy_x_2 of { happy_var_2 -> happyIn10 (happy_var_2 )} happyReduce_16 = happySpecReduce_1 5# happyReduction_16 happyReduction_16 happy_x_1 = case happyOutTok happy_x_1 of { (TokenConstructor happy_var_1) -> happyIn10 (TAtom happy_var_1 )} happyReduce_17 = happySpecReduce_3 6# happyReduction_17 happyReduction_17 happy_x_3 happy_x_2 happy_x_1 = case happyOut11 happy_x_2 of { happy_var_2 -> happyIn11 (happy_var_2 )} happyReduce_18 = happySpecReduce_2 6# happyReduction_18 happyReduction_18 happy_x_2 happy_x_1 = case happyOut11 happy_x_1 of { happy_var_1 -> case happyOut14 happy_x_2 of { happy_var_2 -> happyIn11 (TApplication happy_var_1 happy_var_2 )}} happyReduce_19 = happySpecReduce_1 6# happyReduction_19 happyReduction_19 happy_x_1 = case happyOutTok happy_x_1 of { (TokenConstructor happy_var_1) -> happyIn11 (TAtom happy_var_1 )} happyReduce_20 = happySpecReduce_3 7# happyReduction_20 happyReduction_20 happy_x_3 happy_x_2 happy_x_1 = case happyOut11 happy_x_2 of { happy_var_2 -> happyIn12 (happy_var_2 )} happyReduce_21 = happySpecReduce_1 7# happyReduction_21 happyReduction_21 happy_x_1 = case happyOutTok happy_x_1 of { (TokenConstructor happy_var_1) -> happyIn12 (TAtom happy_var_1 )} happyReduce_22 = happySpecReduce_3 8# happyReduction_22 happyReduction_22 happy_x_3 happy_x_2 happy_x_1 = case happyOut13 happy_x_2 of { happy_var_2 -> happyIn13 (happy_var_2 )} happyReduce_23 = happySpecReduce_2 8# happyReduction_23 happyReduction_23 happy_x_2 happy_x_1 = case happyOut13 happy_x_1 of { happy_var_1 -> case happyOut14 happy_x_2 of { happy_var_2 -> happyIn13 (TApplication happy_var_1 happy_var_2 )}} happyReduce_24 = happySpecReduce_1 8# happyReduction_24 happyReduction_24 happy_x_1 = case happyOut11 happy_x_1 of { happy_var_1 -> happyIn13 (happy_var_1 )} happyReduce_25 = happySpecReduce_1 8# happyReduction_25 happyReduction_25 happy_x_1 = case happyOutTok happy_x_1 of { (TokenVariable happy_var_1) -> happyIn13 (TAtom happy_var_1 )} happyReduce_26 = happySpecReduce_1 8# happyReduction_26 happyReduction_26 happy_x_1 = case happyOutTok happy_x_1 of { (TokenNumber happy_var_1) -> happyIn13 (TAtom happy_var_1 )} happyReduce_27 = happySpecReduce_3 9# happyReduction_27 happyReduction_27 happy_x_3 happy_x_2 happy_x_1 = case happyOut13 happy_x_2 of { happy_var_2 -> happyIn14 (happy_var_2 )} happyReduce_28 = happySpecReduce_1 9# happyReduction_28 happyReduction_28 happy_x_1 = case happyOut12 happy_x_1 of { happy_var_1 -> happyIn14 (happy_var_1 )} happyReduce_29 = happySpecReduce_1 9# happyReduction_29 happyReduction_29 happy_x_1 = case happyOutTok happy_x_1 of { (TokenVariable happy_var_1) -> happyIn14 (TAtom happy_var_1 )} happyReduce_30 = happySpecReduce_1 9# happyReduction_30 happyReduction_30 happy_x_1 = case happyOutTok happy_x_1 of { (TokenNumber happy_var_1) -> happyIn14 (TAtom happy_var_1 )} happyReduce_31 = happySpecReduce_2 10# happyReduction_31 happyReduction_31 happy_x_2 happy_x_1 = case happyOut13 happy_x_1 of { happy_var_1 -> happyIn15 (happy_var_1 )} happyNewToken action sts stk [] = happyDoAction 9# notHappyAtAll action sts stk [] happyNewToken action sts stk (tk:tks) = let cont i = happyDoAction i tk action sts stk tks in case tk of { TokenVariable happy_dollar_dollar -> cont 1#; TokenConstructor happy_dollar_dollar -> cont 2#; TokenNumber happy_dollar_dollar -> cont 3#; TokenEOF -> cont 4#; TokenEOR -> cont 5#; TokenEq -> cont 6#; TokenOB -> cont 7#; TokenCB -> cont 8#; _ -> happyError' (tk:tks) } happyError_ tk tks = happyError' (tk:tks) newtype HappyIdentity a = HappyIdentity a happyIdentity = HappyIdentity happyRunIdentity (HappyIdentity a) = a instance Monad HappyIdentity where return = HappyIdentity (HappyIdentity p) >>= q = q p happyThen :: () => HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b happyThen = (>>=) happyReturn :: () => a -> HappyIdentity a happyReturn = (return) happyThen1 m k tks = (>>=) m (\a -> k a tks) happyReturn1 :: () => a -> b -> HappyIdentity a happyReturn1 = \a tks -> (return) a happyError' :: () => [Token] -> HappyIdentity a happyError' = HappyIdentity . parseError parse tks = happyRunIdentity happySomeParser where happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut5 x)) parseT tks = happyRunIdentity happySomeParser where happySomeParser = happyThen (happyParse 1# tks) (\x -> happyReturn (happyOut15 x)) happySeq = happyDontSeq -- | Terms are atoms, applications or variables. When used on the LHS of a -- rule, the function symbol must be an atom, and all arguments must be atoms -- variables or applications of constructors. data Term = TAtom String | TVariable String | TApplication Term Term deriving (Show,Read) -- | A rewrite rule is made up of a pattern to match against, and a right hand -- side to rewrite to. data RewriteRule = Rule Term Term deriving (Show,Read) -- | Programs are simply lots of rewrite rules. type Program = [RewriteRule] parseError :: [Token] -> a parseError x = error ("Out of cheese error, redo from start. " ++ show x) data Token = TokenVariable String | TokenConstructor String | TokenNumber String | TokenEOR | TokenEOF | TokenEq | TokenOB | TokenCB deriving Show lexer :: String -> [Token] lexer [] = [TokenEOF] lexer ('\r':cs) = TokenEOR : lexer cs lexer ('\n':cs) = TokenEOR : lexer cs lexer (c:cs) | isSpace c = lexer cs | isAlpha c && isUpper c = lexText TokenConstructor (c:cs) | isAlpha c && isLower c = lexText TokenVariable (c:cs) | isDigit c = lexNum (c:cs) lexer ('=':cs) = TokenEq : lexer cs lexer ('(':cs) = TokenOB : lexer cs lexer (')':cs) = TokenCB : lexer cs lexNum cs = TokenNumber num : lexer rest where (num,rest) = span isDigit cs lexText cons cs = cons text : lexer rest where (text,rest) = span isAlpha cs -- | Takes a string representation of a pragram and parses into a list of rules parseProgram :: String -> Program parseProgram = sortVariables . parse . lexer -- | Takes a string representation of a term and parses it parseTerm :: String -> Term parseTerm = parseT . lexer sortVariables :: Program -> Program sortVariables = map sortRuleVariables where sortRuleVariables :: RewriteRule -> RewriteRule sortRuleVariables (Rule p t) = Rule p (makeVariables t $ collectBindings p) collectBindings (TAtom _) = [] collectBindings (TApplication i j) = collectBindings i ++ collectBindings j collectBindings (TVariable n) = [n] makeVariables t@(TAtom x) bs | x `elem` bs = TVariable x | otherwise = TAtom x makeVariables (TApplication i j) bs = TApplication (makeVariables i bs) (makeVariables j bs) makeVariables x bs = x -- | Returns the name of the function defined in a given rewrite rule functionName :: RewriteRule -> String functionName (Rule t _) = tHead t where tHead :: Term -> String tHead (TAtom x) = x tHead (TVariable x) = x tHead (TApplication f _) = tHead f -- | Pretty prints a given rewrite rule showRule :: RewriteRule -> String showRule (Rule p e) = pretty (toPrettyTerm p) ++ " = " ++ pretty (toPrettyTerm e) ++ "\n" where toPrettyTerm (TAtom x) = PAtom x toPrettyTerm (TVariable x) = PAtom x toPrettyTerm (TApplication f a) = PApplication (toPrettyTerm f) (toPrettyTerm a) {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "" #-} {-# LINE 1 "" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} -- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp {-# LINE 28 "templates/GenericTemplate.hs" #-} data Happy_IntList = HappyCons Int# Happy_IntList {-# LINE 49 "templates/GenericTemplate.hs" #-} {-# LINE 59 "templates/GenericTemplate.hs" #-} {-# LINE 68 "templates/GenericTemplate.hs" #-} infixr 9 `HappyStk` data HappyStk a = HappyStk a (HappyStk a) ----------------------------------------------------------------------------- -- starting the parse happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll ----------------------------------------------------------------------------- -- Accepting the parse -- If the current token is 0#, it means we've just accepted a partial -- parse (a %partial parser). We must ignore the saved token on the top of -- the stack in this case. happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) = happyReturn1 ans happyAccept j tk st sts (HappyStk ans _) = (happyTcHack j (happyTcHack st)) (happyReturn1 ans) ----------------------------------------------------------------------------- -- Arrays only: do the next action happyDoAction i tk st = {- nothing -} case action of 0# -> {- nothing -} happyFail i tk st -1# -> {- nothing -} happyAccept i tk st n | (n <# (0# :: Int#)) -> {- nothing -} (happyReduceArr ! rule) i tk st where rule = (I# ((negateInt# ((n +# (1# :: Int#)))))) n -> {- nothing -} happyShift new_state i tk st where new_state = (n -# (1# :: Int#)) where off = indexShortOffAddr happyActOffsets st off_i = (off +# i) check = if (off_i >=# (0# :: Int#)) then (indexShortOffAddr happyCheck off_i ==# i) else False action | check = indexShortOffAddr happyTable off_i | otherwise = indexShortOffAddr happyDefActions st {-# LINE 127 "templates/GenericTemplate.hs" #-} indexShortOffAddr (HappyA# arr) off = #if __GLASGOW_HASKELL__ > 500 narrow16Int# i #elif __GLASGOW_HASKELL__ == 500 intToInt16# i #else (i `iShiftL#` 16#) `iShiftRA#` 16# #endif where #if __GLASGOW_HASKELL__ >= 503 i = word2Int# ((high `uncheckedShiftL#` 8#) `or#` low) #else i = word2Int# ((high `shiftL#` 8#) `or#` low) #endif high = int2Word# (ord# (indexCharOffAddr# arr (off' +# 1#))) low = int2Word# (ord# (indexCharOffAddr# arr off')) off' = off *# 2# data HappyAddr = HappyA# Addr# ----------------------------------------------------------------------------- -- HappyState data type (not arrays) {-# LINE 170 "templates/GenericTemplate.hs" #-} ----------------------------------------------------------------------------- -- Shifting a token happyShift new_state 0# tk st sts stk@(x `HappyStk` _) = let i = (case unsafeCoerce# x of { (I# (i)) -> i }) in -- trace "shifting the error token" $ happyDoAction i tk new_state (HappyCons (st) (sts)) (stk) happyShift new_state i tk st sts stk = happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk) -- happyReduce is specialised for the common cases. happySpecReduce_0 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_0 nt fn j tk st@((action)) sts stk = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk) happySpecReduce_1 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk') = let r = fn v1 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_2 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk') = let r = fn v1 v2 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_3 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk') = let r = fn v1 v2 v3 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happyReduce k i fn 0# tk st sts stk = happyFail 0# tk st sts stk happyReduce k nt fn j tk st sts stk = case happyDrop (k -# (1# :: Int#)) sts of sts1@((HappyCons (st1@(action)) (_))) -> let r = fn stk in -- it doesn't hurt to always seq here... happyDoSeq r (happyGoto nt j tk st1 sts1 r) happyMonadReduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonadReduce k nt fn j tk st sts stk = happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk)) where sts1@((HappyCons (st1@(action)) (_))) = happyDrop k (HappyCons (st) (sts)) drop_stk = happyDropStk k stk happyMonad2Reduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonad2Reduce k nt fn j tk st sts stk = happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk)) where sts1@((HappyCons (st1@(action)) (_))) = happyDrop k (HappyCons (st) (sts)) drop_stk = happyDropStk k stk off = indexShortOffAddr happyGotoOffsets st1 off_i = (off +# nt) new_state = indexShortOffAddr happyTable off_i happyDrop 0# l = l happyDrop n (HappyCons (_) (t)) = happyDrop (n -# (1# :: Int#)) t happyDropStk 0# l = l happyDropStk n (x `HappyStk` xs) = happyDropStk (n -# (1#::Int#)) xs ----------------------------------------------------------------------------- -- Moving to a new state after a reduction happyGoto nt j tk st = {- nothing -} happyDoAction j tk new_state where off = indexShortOffAddr happyGotoOffsets st off_i = (off +# nt) new_state = indexShortOffAddr happyTable off_i ----------------------------------------------------------------------------- -- Error recovery (0# is the error token) -- parse error if we are in recovery and we fail again happyFail 0# tk old_st _ stk = -- trace "failing" $ happyError_ tk {- We don't need state discarding for our restricted implementation of "error". In fact, it can cause some bogus parses, so I've disabled it for now --SDM -- discard a state happyFail 0# tk old_st (HappyCons ((action)) (sts)) (saved_tok `HappyStk` _ `HappyStk` stk) = -- trace ("discarding state, depth " ++ show (length stk)) $ happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk)) -} -- Enter error recovery: generate an error token, -- save the old token and carry on. happyFail i tk (action) sts stk = -- trace "entering error recovery" $ happyDoAction 0# tk action sts ( (unsafeCoerce# (I# (i))) `HappyStk` stk) -- Internal happy errors: notHappyAtAll = error "Internal Happy error\n" ----------------------------------------------------------------------------- -- Hack to get the typechecker to accept our action functions happyTcHack :: Int# -> a -> a happyTcHack x y = y {-# INLINE happyTcHack #-} ----------------------------------------------------------------------------- -- Seq-ing. If the --strict flag is given, then Happy emits -- happySeq = happyDoSeq -- otherwise it emits -- happySeq = happyDontSeq happyDoSeq, happyDontSeq :: a -> b -> b happyDoSeq a b = a `seq` b happyDontSeq a b = b ----------------------------------------------------------------------------- -- Don't inline any functions from the template. GHC has a nasty habit -- of deciding to inline happyGoto everywhere, which increases the size of -- the generated parser quite a bit. {-# NOINLINE happyDoAction #-} {-# NOINLINE happyTable #-} {-# NOINLINE happyCheck #-} {-# NOINLINE happyActOffsets #-} {-# NOINLINE happyGotoOffsets #-} {-# NOINLINE happyDefActions #-} {-# NOINLINE happyShift #-} {-# NOINLINE happySpecReduce_0 #-} {-# NOINLINE happySpecReduce_1 #-} {-# NOINLINE happySpecReduce_2 #-} {-# NOINLINE happySpecReduce_3 #-} {-# NOINLINE happyReduce #-} {-# NOINLINE happyMonadReduce #-} {-# NOINLINE happyGoto #-} {-# NOINLINE happyFail #-} -- end of Happy Template.