{-# OPTIONS_GHC -frewrite-rules #-} {-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies, MagicHash, FlexibleInstances, FlexibleContexts, UnboxedTuples, DeriveDataTypeable, CPP #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Array.CArray.Base -- Copyright : (c) 2001 The University of Glasgow -- (c) 2008 Jed Brown -- License : BSD-style -- -- Maintainer : jed@59A2.org -- Stability : experimental -- Portability : non-portable -- -- This module provides both the immutable 'CArray' and mutable 'IOCArray'. The -- underlying storage is exactly the same - pinned memory on the GC'd heap. -- Elements are stored according to the class 'Storable'. You can obtain a -- pointer to the array contents to manipulate elements from languages like C. -- -- 'CArray' is 16-byte aligned by default. If you create a 'CArray' with -- 'unsafeForeignPtrToCArray' then it may not be aligned. This will be an issue -- if you intend to use SIMD instructions. -- -- 'CArray' is similar to 'Data.Array.Unboxed.UArray' but slower if you stay -- within Haskell. 'CArray' can handle more types and can be used by external -- libraries. -- -- 'IOCArray' is equivalent to 'Data.Array.Storable.StorableArray' and similar -- to 'Data.Array.IO.IOUArray' but slower. 'IOCArray' has O(1) versions of -- 'unsafeFreeze' and 'unsafeThaw' when converting to/from 'CArray'. ----------------------------------------------------------------------------- module Data.Array.CArray.Base where import Control.Applicative import Control.Monad import Data.Array.Base import Data.Array.MArray import Data.Array.IArray import Data.Complex import Data.List import System.IO.Unsafe (unsafePerformIO) import Foreign.Storable import Foreign.ForeignPtr import Foreign.Ptr import Foreign.Marshal.Alloc import Foreign.Marshal.Array (copyArray,peekArray,pokeArray) import Data.Word (Word8,Word) import Data.Generics (Data(..), Typeable(..)) import GHC.Base (realWorld#, Addr#) import GHC.IOBase (IO(..)) import GHC.Ptr (Ptr(..)) import GHC.ForeignPtr (ForeignPtr(..), mallocPlainForeignPtrBytes) -- | The immutable array type. data CArray i e = CArray !i !i Int !(ForeignPtr e) deriving (Data, Typeable) -- | Absolutely equivalent representation, but used for the mutable interface. data IOCArray i e = IOCArray !i !i Int !(ForeignPtr e) deriving (Data, Typeable) instance Storable e => MArray IOCArray e IO where getBounds (IOCArray l u _ _) = return (l,u) getNumElements (IOCArray l u n _) = return n newArray (l,u) init = do fp <- mallocForeignPtrArrayAligned size withForeignPtr fp $ \a -> sequence_ [pokeElemOff a i init | i <- [0..size-1]] return (IOCArray l u size fp) where size = rangeSize (l,u) unsafeNewArray_ (l,u) = do let n = rangeSize (l,u) fp <- mallocForeignPtrArrayAligned n return (IOCArray l u n fp) newArray_ = unsafeNewArray_ unsafeRead (IOCArray _ _ _ fp) i = withForeignPtr fp $ \a -> peekElemOff a i unsafeWrite (IOCArray _ _ _ fp) i e = withForeignPtr fp $ \a -> pokeElemOff a i e -- |The pointer to the array contents is obtained by 'withCArray'. -- The idea is similar to 'ForeignPtr' (used internally here). -- The pointer should be used only during execution of the 'IO' action -- retured by the function passed as argument to 'withCArray'. withCArray :: CArray i e -> (Ptr e -> IO a) -> IO a withCArray (CArray _ _ _ fp) f = withForeignPtr fp f withIOCArray :: IOCArray i e -> (Ptr e -> IO a) -> IO a withIOCArray (IOCArray _ _ _ fp) f = withForeignPtr fp f -- |If you want to use it afterwards, ensure that you -- 'touchCArray' after the last use of the pointer, -- so the array is not freed too early. touchIOCArray :: IOCArray i e -> IO () touchIOCArray (IOCArray _ _ _ fp) = touchForeignPtr fp -- |Construct a 'CArray' from an arbitrary 'ForeignPtr'. It is -- the caller's responsibility to ensure that the 'ForeignPtr' points to -- an area of memory sufficient for the specified bounds. unsafeForeignPtrToCArray :: Ix i => ForeignPtr e -> (i,i) -> IO (CArray i e) unsafeForeignPtrToCArray p (l,u) = return (CArray l u (rangeSize (l,u)) p) unsafeForeignPtrToIOCArray :: Ix i => ForeignPtr e -> (i,i) -> IO (IOCArray i e) unsafeForeignPtrToIOCArray p (l,u) = return (IOCArray l u (rangeSize (l,u)) p) copy :: (Ix i, Storable e) => CArray i e -> IO (CArray i e) copy ain@(CArray l u n fp) = createCArray (l,u) $ \op -> withCArray ain $ \ip -> copyArray op ip n freezeIOCArray :: (Ix i, Storable e) => IOCArray i e -> IO (CArray i e) freezeIOCArray = unsafeFreezeIOCArray >=> copy unsafeFreezeIOCArray :: (Ix i) => IOCArray i e -> IO (CArray i e) unsafeFreezeIOCArray (IOCArray l u n fp) = return (CArray l u n fp) thawIOCArray :: (Ix i, Storable e) => CArray i e -> IO (IOCArray i e) thawIOCArray = copy >=> unsafeThawIOCArray unsafeThawIOCArray :: (Ix i) => CArray i e -> IO (IOCArray i e) unsafeThawIOCArray (CArray l u n fp) = return (IOCArray l u n fp) -- Since we can remove the (Storable e) restriction for these, the rules are -- compact and general. {-# RULES "unsafeFreeze/IOCArray" unsafeFreeze = unsafeFreezeIOCArray "unsafeThaw/IOCArray" unsafeThaw = unsafeThawIOCArray #-} -- Since we can't parameterize the rules with the (Storable e) constraint, we -- have to specialize manually. This is unfortunate since it is less general. {-# RULES "freeze/IOCArray/Int" freeze = freezeIOCArray :: (Ix i) => IOCArray i Int -> IO (CArray i Int) "freeze/IOCArray/Float" freeze = freezeIOCArray :: (Ix i) => IOCArray i Float -> IO (CArray i Float) "freeze/IOCArray/Double" freeze = freezeIOCArray :: (Ix i) => IOCArray i Double -> IO (CArray i Double) "thaw/IOCArray/Int" thaw = thawIOCArray :: (Ix i) => CArray i Int -> IO (IOCArray i Int) "thaw/IOCArray/Float" thaw = thawIOCArray :: (Ix i) => CArray i Float -> IO (IOCArray i Float) "thaw/IOCArray/Double" thaw = thawIOCArray :: (Ix i) => CArray i Double -> IO (IOCArray i Double) #-} instance Storable e => IArray CArray e where {-# INLINE bounds #-} bounds (CArray l u _ _) = (l,u) {-# INLINE numElements #-} numElements (CArray _ _ n _) = n {-# NOINLINE unsafeArray #-} unsafeArray lu ies = unsafePerformIO $ unsafeArrayCArray lu ies (zeroElem (undefined :: e)) {-# INLINE unsafeAt #-} unsafeAt (CArray _ _ _ fp) i = unsafeInlinePerformIO $ withForeignPtr fp $ \a -> peekElemOff a i {-# NOINLINE unsafeReplace #-} unsafeReplace arr ies = unsafePerformIO $ unsafeReplaceCArray arr ies {-# NOINLINE unsafeAccum #-} unsafeAccum f arr ies = unsafePerformIO $ unsafeAccumCArray f arr ies {-# NOINLINE unsafeAccumArray #-} unsafeAccumArray f init lu ies = unsafePerformIO $ unsafeAccumArrayCArray f init lu ies -- | Hackish way to get the zero element for a Storable type. {-# NOINLINE zeroElem #-} zeroElem :: Storable a => a -> a zeroElem u = unsafePerformIO $ do allocaBytes size $ \p -> do sequence_ [pokeByteOff p off (0 :: Word8) | off <- [0 .. (size - 1)] ] peek (castPtr p) where size = sizeOf u {-# INLINE unsafeArrayCArray #-} unsafeArrayCArray :: (MArray IOCArray e IO, Storable e, Ix i) => (i,i) -> [(Int, e)] -> e -> IO (CArray i e) unsafeArrayCArray lu ies default_elem = do marr <- newArray lu default_elem sequence_ [unsafeWrite marr i e | (i, e) <- ies] unsafeFreezeIOCArray marr {-# INLINE unsafeReplaceCArray #-} unsafeReplaceCArray :: (MArray IOCArray e IO, Storable e, Ix i) => CArray i e -> [(Int, e)] -> IO (CArray i e) unsafeReplaceCArray arr ies = do marr <- thawIOCArray arr sequence_ [unsafeWrite marr i e | (i, e) <- ies] unsafeFreezeIOCArray marr {-# INLINE unsafeAccumCArray #-} unsafeAccumCArray :: (MArray IOCArray e IO, Storable e, Ix i) => (e -> e' -> e) -> CArray i e -> [(Int, e')] -> IO (CArray i e) unsafeAccumCArray f arr ies = do marr <- thawIOCArray arr sequence_ [do old <- unsafeRead marr i unsafeWrite marr i (f old new) | (i, new) <- ies] unsafeFreezeIOCArray marr {-# INLINE unsafeAccumArrayCArray #-} unsafeAccumArrayCArray :: (MArray IOCArray e IO, Storable e, Ix i) => (e -> e' -> e) -> e -> (i,i) -> [(Int, e')] -> IO (CArray i e) unsafeAccumArrayCArray f init lu ies = do marr <- newArray lu init sequence_ [do old <- unsafeRead marr i unsafeWrite marr i (f old new) | (i, new) <- ies] unsafeFreezeIOCArray marr {-# INLINE eqCArray #-} eqCArray :: (IArray CArray e, Ix i, Eq e) => CArray i e -> CArray i e -> Bool eqCArray arr1@(CArray l1 u1 n1 _) arr2@(CArray l2 u2 n2 _) = if n1 == 0 then n2 == 0 else l1 == l2 && u1 == u2 && and [unsafeAt arr1 i == unsafeAt arr2 i | i <- [0 .. n1 - 1]] {-# INLINE cmpCArray #-} cmpCArray :: (IArray CArray e, Ix i, Ord e) => CArray i e -> CArray i e -> Ordering cmpCArray arr1 arr2 = compare (assocs arr1) (assocs arr2) {-# INLINE cmpIntCArray #-} cmpIntCArray :: (IArray CArray e, Ord e) => CArray Int e -> CArray Int e -> Ordering cmpIntCArray arr1@(CArray l1 u1 n1 _) arr2@(CArray l2 u2 n2 _) = if n1 == 0 then if n2 == 0 then EQ else LT else if n2 == 0 then GT else case compare l1 l2 of EQ -> foldr cmp (compare u1 u2) [0 .. (n1 `min` n2) - 1] other -> other where cmp i rest = case compare (unsafeAt arr1 i) (unsafeAt arr2 i) of EQ -> rest other -> other {-# RULES "cmpCArray/Int" cmpCArray = cmpIntCArray #-} instance (Ix ix, Eq e, IArray CArray e) => Eq (CArray ix e) where (==) = eqCArray instance (Ix ix, Ord e, IArray CArray e) => Ord (CArray ix e) where compare = cmpCArray instance (Ix ix, Show ix, Show e, IArray CArray e) => Show (CArray ix e) where showsPrec = showsIArray -- -- General purpose array operations which happen to be very fast for CArray. -- -- | O(1) reshape an array. The number of elements in the new shape must not -- exceed the number in the old shape. The elements are in C-style ordering. reshape :: (Ix i, Ix j) => (j,j) -> CArray i e -> CArray j e reshape (l',u') (CArray l u n fp) | n' > n = error "reshape: new size too large" |otherwise = CArray l' u' n' fp where n' = rangeSize (l', u') -- | O(1) make a rank 1 array from an arbitrary shape. -- It has the property that 'reshape (0, size a - 1) a == flatten a'. flatten :: Ix i => CArray i e -> CArray Int e flatten (CArray l u n fp) = CArray 0 (n - 1) n fp -- | Determine the rank of an array. rank :: (Shapable i, Ix i, IArray a e) => a i e -> Int rank = sRank . fst . bounds -- -- Useful for multi-dimensional arrays. Not specific to CArray. -- | Canonical representation of the shape. -- The following properties hold: -- 'length . shape = rank' -- 'product . shape = size' shape :: (Shapable i, Ix i, IArray a e) => a i e -> [Int] shape = uncurry sShape . bounds -- | How much the offset changes when you move one element in the given -- direction. Since arrays are in row-major order, 'last . shapeToStride = const 1' shapeToStride :: [Int] -> [Int] shapeToStride = scanr (*) 1 . tail -- | Number of elements in the Array. size :: (Ix i, IArray a e) => a i e -> Int size = numElements -- -- None of the following are specific to CArray. Some could have slightly -- faster versions specialized to CArray. In general, slicing is expensive -- because the slice is not contiguous in memory, so must be copied. There are -- many specialized versions. -- -- | Generic slice and map. This takes the new range, the inverse map on -- indices, and function to produce the next element. It is the most general -- operation in its class. ixmapWithIndP :: (Ix i, Ix i', IArray a e, IArray a' e') => (i',i') -> (i' -> i) -> (i -> e -> i' -> e') -> a i e -> a' i' e' ixmapWithIndP lu f g arr = listArray lu [ let i = f i' in g i (arr ! i) i' | i' <- range lu ] -- | Less polymorphic version. ixmapWithInd :: (Ix i, Ix i', IArray a e, IArray a e') => (i',i') -> (i' -> i) -> (i -> e -> i' -> e') -> a i e -> a i' e' ixmapWithInd = ixmapWithIndP -- | Perform an operation on the elements, independent of their location. ixmapWithP :: (Ix i, Ix i', IArray a e, IArray a' e') => (i',i') -> (i' -> i) -> (e -> e') -> a i e -> a' i' e' ixmapWithP lu f g arr = listArray lu [ g (arr ! f i') | i' <- range lu ] -- | Less polymorphic version. ixmapWith :: (Ix i, Ix i', IArray a e, IArray a e') => (i',i') -> (i' -> i) -> (e -> e') -> a i e -> a i' e' ixmapWith = ixmapWithP -- | More polymorphic version of 'ixmap'. ixmapP :: (Ix i, Ix i', IArray a e, IArray a' e) => (i',i') -> (i' -> i) -> a i e -> a' i' e ixmapP lu f arr = ixmapWithP lu f id arr -- | More friendly sub-arrays with element mapping. sliceStrideWithP :: (Ix i, Shapable i, Ix i', IArray a e, IArray a' e') => (i',i') -> (i,i,i) -> (e -> e') -> a i e -> a' i' e' sliceStrideWithP lu (start,next,end) f arr | all (inRange (bounds arr)) [start,next,end] = listArray lu elems | otherwise = error "sliceStrideWith: out of bounds" where is = offsetShapeFromThenTo (shape arr) (index' start) (index' next) (index' end) elems = map (f . (unsafeAt arr)) is index' = indexes arr -- | Less polymorphic version. sliceStrideWith :: (Ix i, Shapable i, Ix i', IArray a e, IArray a e') => (i',i') -> (i,i,i) -> (e -> e') -> a i e -> a i' e' sliceStrideWith = sliceStrideWithP -- | Strided sub-array without element mapping. sliceStrideP :: (Ix i, Shapable i, Ix i', IArray a e, IArray a' e) => (i',i') -> (i,i,i) -> a i e -> a' i' e sliceStrideP lu sne = sliceStrideWithP lu sne id -- | Less polymorphic version. sliceStride :: (Ix i, Shapable i, Ix i', IArray a e) => (i',i') -> (i,i,i) -> a i e -> a i' e sliceStride = sliceStrideP -- | Contiguous sub-array with element mapping. sliceWithP :: (Ix i, Shapable i, Ix i', IArray a e, IArray a' e') => (i',i') -> (i,i) -> (e -> e') -> a i e -> a' i' e' sliceWithP lu (start,end) f arr | all (inRange (bounds arr)) [start,end] = listArray lu elems | otherwise = error "sliceWith: out of bounds" where is = offsetShapeFromTo (shape arr) (index' start) (index' end) elems = map (f . (unsafeAt arr)) is index' = indexes arr -- | Less polymorphic version. sliceWith :: (Ix i, Shapable i, Ix i', IArray a e, IArray a e') => (i',i') -> (i,i) -> (e -> e') -> a i e -> a i' e' sliceWith = sliceWithP -- | Contiguous sub-array without element mapping. sliceP :: (Ix i, Shapable i, Ix i', IArray a e, IArray a' e) => (i',i') -> (i,i) -> a i e -> a' i' e sliceP lu se = sliceWithP lu se id -- | Less polymorphic version. slice :: (Ix i, Shapable i, Ix i', IArray a e) => (i',i') -> (i,i) -> a i e -> a i' e slice = sliceP -- | In-place map on CArray. Note that this is /IN PLACE/ so you should not -- retain any reference to the original. It flagrantly breaks referential -- transparency! {-# INLINE mapCArrayInPlace #-} mapCArrayInPlace :: (Ix i, IArray CArray e, Storable e) => (e -> e) -> CArray i e -> CArray i e mapCArrayInPlace f a = unsafeInlinePerformIO $ do withCArray a $ \p -> forM_ [0 .. size a - 1] $ \i -> peekElemOff p i >>= pokeElemOff p i . f return a ----------------------------------------- -- These are meant to be internal only indexes :: (Ix i, Shapable i, IArray a e) => a i e -> i -> [Int] indexes a i = map pred $ (sShape . fst . bounds) a i offsetShapeFromThenTo s a b c = foldr (liftA2 (+)) [0] (ilists stride a b c) where ilists = zipWith4 (\s a b c -> map (*s) $ enumFromThenTo a b c) stride = shapeToStride s offsetShapeFromTo = offsetShapeFromTo' id offsetShapeFromTo' f s a b = foldr (liftA2 (+)) [0] (f $ ilists stride a b) where ilists = zipWith3 (\s a b -> map (*s) $ enumFromTo a b) stride = shapeToStride s offsets :: (Ix a, Shapable a) => (a, a) -> a -> [Int] offsets lu i = reverse . osets (index lu i) . reverse . scanl1 (*) . uncurry sShape $ lu where osets 0 [] = [] osets i (b:bs) = r : osets d bs where (d,r) = i `divMod` b osets _ _ = error "osets" ----------------------------------------- -- | p-norm on the array taken as a vector normp :: (Ix i, RealFloat e', Abs e e', IArray a e) => e' -> a i e -> e' normp p a | 1 <= p && not (isInfinite p) = (** (1/p)) $ foldl' (\z e -> z + (abs_ e) ** p) 0 (elems a) | otherwise = error "normp: p < 1" -- | 2-norm on the array taken as a vector (Frobenius norm for matrices) norm2 :: (Ix i, Floating e', Abs e e', IArray a e) => a i e -> e' norm2 a = sqrt $ foldl' (\z e -> z + abs_ e ^ 2) 0 (elems a) -- | Sup norm on the array taken as a vector normSup :: (Ix i, Num e', Ord e', Abs e e', IArray a e) => a i e -> e' normSup a = foldl' (\z e -> z `max` abs_ e) 0 (elems a) -- | Polymorphic version of amap. liftArrayP :: (Ix i, IArray a e, IArray a1 e1) => (e -> e1) -> a i e -> a1 i e1 liftArrayP f a = listArray (bounds a) (map f (elems a)) -- | Equivalent to amap. Here for consistency only. liftArray :: (Ix i, IArray a e, IArray a e1) => (e -> e1) -> a i e -> a i e1 liftArray = liftArrayP -- | Polymorphic 2-array lift. liftArray2P :: (Ix i, IArray a e, IArray a1 e1, IArray a2 e2) => (e -> e1 -> e2) -> a i e -> a1 i e1 -> a2 i e2 liftArray2P f a b | aBounds == bounds b = listArray aBounds (zipWith f (elems a) (elems b)) | otherwise = error "liftArray2: array bounds must match" where aBounds = bounds a -- | Less polymorphic version. liftArray2 :: (Ix i, IArray a e, IArray a e1, IArray a e2) => (e -> e1 -> e2) -> a i e -> a i e1 -> a i e2 liftArray2 = liftArray2P -- | Polymorphic 3-array lift. liftArray3P :: (Ix i, IArray a e, IArray a1 e1, IArray a2 e2, IArray a3 e3) => (e -> e1 -> e2 -> e3) -> a i e -> a1 i e1 -> a2 i e2 -> a3 i e3 liftArray3P f a b c | aBounds == bounds b && aBounds == bounds c = listArray aBounds (zipWith3 f (elems a) (elems b) (elems c)) | otherwise = error "liftArray2: array bounds must match" where aBounds = bounds a -- | Less polymorphic version. liftArray3 :: (Ix i, IArray a e, IArray a e1, IArray a e2, IArray a e3) => (e -> e1 -> e2 -> e3) -> a i e -> a i e1 -> a i e2 -> a i e3 liftArray3 = liftArray3P -- | We need this type class to distinguish between different tuples of Ix. -- There are Shapable instances for homogenous Int tuples, but may Haddock -- doesn't see them. class Shapable i where sRank :: i -> Int sShape :: i -> i -> [Int] sBounds :: [Int] -> (i,i) instance Shapable Int where sRank _ = 1 sShape a a' = [rangeSize (a,a')] sBounds [a] = (0,a-1) instance Shapable (Int,Int) where sRank _ = 2 sShape (a,b) (a',b') = [rangeSize (a,a'), rangeSize (b,b')] sBounds [a,b] = ((0,0),(a-1,b-1)) instance Shapable (Int,Int,Int) where sRank _ = 3 sShape (a,b,c) (a',b',c') = [rangeSize (a,a'), rangeSize (b,b'), rangeSize (c,c')] sBounds [a,b,c] = ((0,0,0),(a-1,b-1,c-1)) instance Shapable (Int,Int,Int,Int) where sRank _ = 4 sShape (a,b,c,d) (a',b',c',d') = [rangeSize (a,a'), rangeSize (b,b'), rangeSize (c,c'), rangeSize (d,d')] sBounds [a,b,c,d] = ((0,0,0,0),(a-1,b-1,c-1,d-1)) instance Shapable (Int,Int,Int,Int,Int) where sRank _ = 5 sShape (a,b,c,d,e) (a',b',c',d',e') = [rangeSize (a,a'), rangeSize (b,b'), rangeSize (c,c'), rangeSize (d,d') , rangeSize (e,e')] sBounds [a,b,c,d,e] = ((0,0,0,0,0),(a-1,b-1,c-1,d-1,e-1)) instance Shapable (Int,Int,Int,Int,Int,Int) where sRank _ = 6 sShape (a,b,c,d,e,f) (a',b',c',d',e',f') = [rangeSize (a,a'), rangeSize (b,b'), rangeSize (c,c'), rangeSize (d,d') , rangeSize (e,e'), rangeSize (f,f')] sBounds [a,b,c,d,e,f] = ((0,0,0,0,0,0),(a-1,b-1,c-1,d-1,e-1,f-1)) instance Shapable (Int,Int,Int,Int,Int,Int,Int) where sRank _ = 7 sShape (a,b,c,d,e,f,g) (a',b',c',d',e',f',g') = [rangeSize (a,a'), rangeSize (b,b'), rangeSize (c,c'), rangeSize (d,d') , rangeSize (e,e'), rangeSize (f,f'), rangeSize (g,g')] sBounds [a,b,c,d,e,f,g] = ((0,0,0,0,0,0,0),(a-1,b-1,c-1,d-1,e-1,f-1,g-1)) instance Shapable (Int,Int,Int,Int,Int,Int,Int,Int) where sRank _ = 8 sShape (a,b,c,d,e,f,g,h) (a',b',c',d',e',f',g',h') = [rangeSize (a,a'), rangeSize (b,b'), rangeSize (c,c'), rangeSize (d,d') , rangeSize (e,e'), rangeSize (f,f'), rangeSize (g,g'), rangeSize (h,h')] sBounds [a,b,c,d,e,f,g,h] = ((0,0,0,0,0,0,0,0),(a-1,b-1,c-1,d-1,e-1,f-1,g-1,h-1)) instance Shapable (Int,Int,Int,Int,Int,Int,Int,Int,Int) where sRank _ = 9 sShape (a,b,c,d,e,f,g,h,i) (a',b',c',d',e',f',g',h',i') = [rangeSize (a,a'), rangeSize (b,b'), rangeSize (c,c'), rangeSize (d,d') , rangeSize (e,e'), rangeSize (f,f'), rangeSize (g,g'), rangeSize (h,h') , rangeSize (i,i')] sBounds [a,b,c,d,e,f,g,h,i] = ((0,0,0,0,0,0,0,0,0) ,(a-1,b-1,c-1,d-1,e-1,f-1,g-1,h-1,i-1)) -- | Hack so that norms have a sensible type. class Abs a b | a -> b where abs_ :: a -> b instance Abs (Complex Double) Double where abs_ = magnitude instance Abs (Complex Float) Float where abs_ = magnitude instance Abs Double Double where abs_ = abs instance Abs Float Float where abs_ = abs -- | This variant of 'unsafePerformIO' is quite /mind-bogglingly unsafe/. It -- unstitches the dependency chain that holds the IO monad together and breaks -- all your ordinary intuitions about IO, sequencing and side effects. Avoid -- it unless you really know what you are doing. -- -- It is only safe for operations which are genuinely pure (not just -- externally pure) for example reading from an immutable foreign data -- structure. In particular, you should do no memory allocation inside an -- 'unsafeInlinePerformIO' block. This is because an allocation is a constant -- and is likely to be floated out and shared. More generally, any part of any -- IO action that does not depend on a function argument is likely to be -- floated to the top level and have its result shared. -- -- It is more efficient because in addition to the checks that -- 'unsafeDupablePerformIO' omits, we also inline. Additionally we do not -- pretend that the body is lazy which allows the strictness analyser to see -- the strictness in the body. In turn this allows some re-ordering of -- operations and any corresponding side-effects. -- -- With GHC it compiles to essentially no code and it exposes the body to -- further inlining. -- {-# INLINE unsafeInlinePerformIO #-} unsafeInlinePerformIO :: IO a -> a #ifdef __GLASGOW_HASKELL__ unsafeInlinePerformIO (IO m) = case m realWorld# of (# _, r #) -> r #else unsafeInlinePerformIO = unsafePerformIO #endif -- | Allocate an array which is 16-byte aligned. Essential for SIMD instructions. mallocForeignPtrArrayAligned :: Storable a => Int -> IO (ForeignPtr a) mallocForeignPtrArrayAligned n = doMalloc undefined n where doMalloc :: Storable b => b -> Int -> IO (ForeignPtr b) doMalloc dummy size = mallocForeignPtrBytesAligned (size * sizeOf dummy) -- | Allocate memory which is 16-byte aligned. This is essential for SIMD -- instructions. We know that mallocPlainForeignPtrBytes will give word-aligned -- memory, so we pad enough to be able to return the desired amount of memory -- after aligning our pointer. mallocForeignPtrBytesAligned :: Int -> IO (ForeignPtr a) mallocForeignPtrBytesAligned n = do (ForeignPtr addr contents) <- mallocPlainForeignPtrBytes (n + pad) let (Ptr addr') = alignPtr (Ptr addr) 16 return (ForeignPtr addr' contents) where pad = 16 - sizeOf (undefined :: Word) -- | Make a new CArray with an IO action. createCArray :: (Ix i, Storable e) => (i,i) -> (Ptr e -> IO ()) -> IO (CArray i e) createCArray lu f = do fp <- mallocForeignPtrArrayAligned (rangeSize lu) withForeignPtr fp f unsafeForeignPtrToCArray fp lu unsafeCreateCArray :: (Ix i, Storable e) => (i,i) -> (Ptr e -> IO ()) -> CArray i e unsafeCreateCArray lu = unsafePerformIO . createCArray lu