module Control.Functor.Adjunction 
	( Adjunction (unit, counit, leftAdjunct, rightAdjunct)
	, ACompF(ACompF)
	) where
import Control.Functor.Composition
import Control.Functor.Exponential
import Control.Functor.Full
import Control.Functor.HigherOrder
import Control.Applicative
import Control.Monad.Reader
import Control.Monad.State
import Control.Monad.Identity
import Control.Comonad.Reader
import Control.Comonad.Context
class (Functor f, Functor g) => Adjunction f g | f -> g, g -> f where
	unit   :: a -> g (f a)
	counit :: f (g a) -> a
	leftAdjunct  :: (f a -> b) -> a -> g b
	rightAdjunct :: (a -> g b) -> f a -> b
	unit = leftAdjunct id
	counit = rightAdjunct id
	leftAdjunct f = fmap f . unit
	rightAdjunct f = counit . fmap f
instance (Adjunction f1 g1, Adjunction f2 g2) => Adjunction (CompF f2 f1) (CompF g1 g2) where
	counit = counit . fmap (counit . fmap decompose) . decompose
	unit = compose . fmap (fmap compose . unit) . unit
newtype ACompF f g a = ACompF (CompF f g a) deriving (Functor, ExpFunctor, Full, Composition, HFunctor)
instance Adjunction f g => Pointed (ACompF g f) where
        point = compose . unit
instance Adjunction f g => Copointed (ACompF f g) where
        extract = counit . decompose
instance Adjunction f g => Applicative (ACompF g f) where
	pure = point
	(<*>) = ap
instance Adjunction f g => Monad (ACompF g f) where
        return = point
        m >>= f = compose . fmap (rightAdjunct (decompose . f)) $ decompose m
instance Adjunction f g => Comonad (ACompF f g) where
        extend f = compose . fmap (leftAdjunct (f . compose)) . decompose
instance Adjunction ((,)e) ((->)e) where
	leftAdjunct f a e  = f (e,a)
	rightAdjunct f ~(e,a) = f a e
	unit a e = (e,a)
	counit (x,f) = f x
instance Adjunction Identity Identity where
	unit = Identity . Identity
	counit = runIdentity . runIdentity 
instance Adjunction (Coreader e) (Reader e) where
	unit a = Reader (\e -> Coreader e a)
	counit (Coreader x f) = runReader f x
instance ComonadContext e ((,)e `ACompF` (->)e) where
	getC = fst . decompose
	modifyC f = uncurry (flip id . f) . decompose
instance MonadState e ((->)e `ACompF` (,)e) where
	get = compose $ \s -> (s,s)
	put s = compose $ const (s,())