-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Polykinded Prelude Kernel. -- -- Polykinded Prelude Kernel. @package chassis @version 0.0.6.0 module Chassis -- | Uninhabited data type data Void -- | Since Void values logically don't exist, this witnesses the -- logical reasoning tool of "ex falso quodlibet". -- --
-- >>> let x :: Either Void Int; x = Right 5
--
-- >>> :{
-- case x of
-- Right r -> r
-- Left l -> absurd l
-- :}
-- 5
--
absurd :: Void -> a
data Bool
False :: Bool
True :: Bool
-- | Boolean "not"
not :: Bool -> Bool
-- | A fixed-precision integer type with at least the range [-2^29 ..
-- 2^29-1]. The exact range for a given implementation can be
-- determined by using minBound and maxBound from the
-- Bounded class.
data Int
-- | A String is a list of characters. String constants in Haskell
-- are values of type String.
--
-- See Data.List for operations on lists.
type String = [Char]
-- | A space-efficient representation of a Word8 vector, supporting
-- many efficient operations.
--
-- A ByteString contains 8-bit bytes, or by using the operations
-- from Data.ByteString.Char8 it can be interpreted as containing
-- 8-bit characters.
data ByteString
-- | A space efficient, packed, unboxed Unicode text type.
data Text
-- | Conversion of values to readable Strings.
--
-- Derived instances of Show have the following properties, which
-- are compatible with derived instances of Read:
--
-- -- infixr 5 :^: -- data Tree a = Leaf a | Tree a :^: Tree a ---- -- the derived instance of Show is equivalent to -- --
-- instance (Show a) => Show (Tree a) where -- -- showsPrec d (Leaf m) = showParen (d > app_prec) $ -- showString "Leaf " . showsPrec (app_prec+1) m -- where app_prec = 10 -- -- showsPrec d (u :^: v) = showParen (d > up_prec) $ -- showsPrec (up_prec+1) u . -- showString " :^: " . -- showsPrec (up_prec+1) v -- where up_prec = 5 ---- -- Note that right-associativity of :^: is ignored. For example, -- --
-- >>> [1,2,3] <> [4,5,6] -- [1,2,3,4,5,6] --(<>) :: Semigroup a => a -> a -> a infixr 6 <> -- | The class of monoids (types with an associative binary operation that -- has an identity). Instances should satisfy the following: -- --
-- >>> "Hello world" <> mempty -- "Hello world" --mempty :: Monoid a => a -- | The Eq class defines equality (==) and inequality -- (/=). All the basic datatypes exported by the Prelude -- are instances of Eq, and Eq may be derived for any -- datatype whose constituents are also instances of Eq. -- -- The Haskell Report defines no laws for Eq. However, == -- is customarily expected to implement an equivalence relationship where -- two values comparing equal are indistinguishable by "public" -- functions, with a "public" function being one not allowing to see -- implementation details. For example, for a type representing -- non-normalised natural numbers modulo 100, a "public" function doesn't -- make the difference between 1 and 201. It is expected to have the -- following properties: -- --
-- f $ g $ h x = f (g (h x)) ---- -- It is also useful in higher-order situations, such as map -- ($ 0) xs, or zipWith ($) fs xs. -- -- Note that ($) is levity-polymorphic in its result -- type, so that foo $ True where foo :: Bool -> -- Int# is well-typed. ($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 $ -- | & is a reverse application operator. This provides -- notational convenience. Its precedence is one higher than that of the -- forward application operator $, which allows & to be -- nested in $. -- --
-- >>> 5 & (+1) & show -- "6" --(&) :: a -> (a -> b) -> b infixl 1 & -- | A value of type IO a is a computation which, when -- performed, does some I/O before returning a value of type a. -- -- There is really only one way to "perform" an I/O action: bind it to -- Main.main in your program. When your program is run, the I/O -- will be performed. It isn't possible to perform I/O from an arbitrary -- function, unless that function is itself in the IO monad and -- called at some point, directly or indirectly, from Main.main. -- -- IO is a monad, so IO actions can be combined using -- either the do-notation or the >> and >>= -- operations from the Monad class. data IO a -- | The Maybe type encapsulates an optional value. A value of type -- Maybe a either contains a value of type a -- (represented as Just a), or it is empty (represented -- as Nothing). Using Maybe is a good way to deal with -- errors or exceptional cases without resorting to drastic measures such -- as error. -- -- The Maybe type is also a monad. It is a simple kind of error -- monad, where all errors are represented by Nothing. A richer -- error monad can be built using the Either type. data Maybe a Nothing :: Maybe a Just :: a -> Maybe a -- | The maybe function takes a default value, a function, and a -- Maybe value. If the Maybe value is Nothing, the -- function returns the default value. Otherwise, it applies the function -- to the value inside the Just and returns the result. -- --
-- >>> maybe False odd (Just 3) -- True ---- --
-- >>> maybe False odd Nothing -- False ---- -- Read an integer from a string using readMaybe. If we succeed, -- return twice the integer; that is, apply (*2) to it. If -- instead we fail to parse an integer, return 0 by default: -- --
-- >>> import Text.Read ( readMaybe ) -- -- >>> maybe 0 (*2) (readMaybe "5") -- 10 -- -- >>> maybe 0 (*2) (readMaybe "") -- 0 ---- -- Apply show to a Maybe Int. If we have Just n, -- we want to show the underlying Int n. But if we have -- Nothing, we return the empty string instead of (for example) -- "Nothing": -- --
-- >>> maybe "" show (Just 5) -- "5" -- -- >>> maybe "" show Nothing -- "" --maybe :: b -> (a -> b) -> Maybe a -> b -- | The Either type represents values with two possibilities: a -- value of type Either a b is either Left -- a or Right b. -- -- The Either type is sometimes used to represent a value which is -- either correct or an error; by convention, the Left constructor -- is used to hold an error value and the Right constructor is -- used to hold a correct value (mnemonic: "right" also means "correct"). -- --
-- >>> let s = Left "foo" :: Either String Int -- -- >>> s -- Left "foo" -- -- >>> let n = Right 3 :: Either String Int -- -- >>> n -- Right 3 -- -- >>> :type s -- s :: Either String Int -- -- >>> :type n -- n :: Either String Int ---- -- The fmap from our Functor instance will ignore -- Left values, but will apply the supplied function to values -- contained in a Right: -- --
-- >>> let s = Left "foo" :: Either String Int -- -- >>> let n = Right 3 :: Either String Int -- -- >>> fmap (*2) s -- Left "foo" -- -- >>> fmap (*2) n -- Right 6 ---- -- The Monad instance for Either allows us to chain -- together multiple actions which may fail, and fail overall if any of -- the individual steps failed. First we'll write a function that can -- either parse an Int from a Char, or fail. -- --
-- >>> import Data.Char ( digitToInt, isDigit )
--
-- >>> :{
-- let parseEither :: Char -> Either String Int
-- parseEither c
-- | isDigit c = Right (digitToInt c)
-- | otherwise = Left "parse error"
--
-- >>> :}
--
--
-- The following should work, since both '1' and '2'
-- can be parsed as Ints.
--
--
-- >>> :{
-- let parseMultiple :: Either String Int
-- parseMultiple = do
-- x <- parseEither '1'
-- y <- parseEither '2'
-- return (x + y)
--
-- >>> :}
--
--
-- -- >>> parseMultiple -- Right 3 ---- -- But the following should fail overall, since the first operation where -- we attempt to parse 'm' as an Int will fail: -- --
-- >>> :{
-- let parseMultiple :: Either String Int
-- parseMultiple = do
-- x <- parseEither 'm'
-- y <- parseEither '2'
-- return (x + y)
--
-- >>> :}
--
--
-- -- >>> parseMultiple -- Left "parse error" --data Either a b Left :: a -> Either a b Right :: b -> Either a b -- | Case analysis for the Either type. If the value is -- Left a, apply the first function to a; if it -- is Right b, apply the second function to b. -- --
-- >>> let s = Left "foo" :: Either String Int -- -- >>> let n = Right 3 :: Either String Int -- -- >>> either length (*2) s -- 3 -- -- >>> either length (*2) n -- 6 --either :: (a -> c) -> (b -> c) -> Either a b -> c -- | Non-empty (and non-strict) list type. data NonEmpty a (:|) :: a -> [a] -> NonEmpty a infixr 5 :| -- | A Map from keys k to values a. -- -- The Semigroup operation for Map is union, which -- prefers values from the left operand. If m1 maps a key -- k to a value a1, and m2 maps the same key -- to a different value a2, then their union m1 <> -- m2 maps k to a1. data Map k a -- | Extract the first component of a pair. fst :: (a, b) -> a -- | Extract the second component of a pair. snd :: (a, b) -> b -- | const x is a unary function which evaluates to x for -- all inputs. -- --
-- >>> const 42 "hello" -- 42 ---- --
-- >>> map (const 42) [0..3] -- [42,42,42,42] --const :: a -> b -> a -- | curry converts an uncurried function to a curried function. -- --
-- >>> curry fst 1 2 -- 1 --curry :: ((a, b) -> c) -> a -> b -> c -- | uncurry converts a curried function to a function on pairs. -- --
-- >>> uncurry (+) (1,2) -- 3 ---- --
-- >>> uncurry ($) (show, 1) -- "1" ---- --
-- >>> map (uncurry max) [(1,2), (3,4), (6,8)] -- [2,4,8] --uncurry :: (a -> b -> c) -> (a, b) -> c -- | Data structures that can be folded. -- -- For example, given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Foldable Tree where -- foldMap f Empty = mempty -- foldMap f (Leaf x) = f x -- foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r ---- -- This is suitable even for abstract types, as the monoid is assumed to -- satisfy the monoid laws. Alternatively, one could define -- foldr: -- --
-- instance Foldable Tree where -- foldr f z Empty = z -- foldr f z (Leaf x) = f x z -- foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l ---- -- Foldable instances are expected to satisfy the following -- laws: -- --
-- foldr f z t = appEndo (foldMap (Endo . f) t ) z ---- --
-- foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z ---- --
-- fold = foldMap id ---- --
-- length = getSum . foldMap (Sum . const 1) ---- -- sum, product, maximum, and minimum -- should all be essentially equivalent to foldMap forms, such -- as -- --
-- sum = getSum . foldMap Sum ---- -- but may be less defined. -- -- If the type is also a Functor instance, it should satisfy -- --
-- foldMap f = fold . fmap f ---- -- which implies that -- --
-- foldMap f . fmap g = foldMap (f . g) --class Foldable (t :: Type -> Type) -- | Right-associative fold of a structure. -- -- In the case of lists, foldr, when applied to a binary operator, -- a starting value (typically the right-identity of the operator), and a -- list, reduces the list using the binary operator, from right to left: -- --
-- foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...) ---- -- Note that, since the head of the resulting expression is produced by -- an application of the operator to the first element of the list, -- foldr can produce a terminating expression from an infinite -- list. -- -- For a general Foldable structure this should be semantically -- identical to, -- --
-- foldr f z = foldr f z . toList --foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b -- | Left-associative fold of a structure but with strict application of -- the operator. -- -- This ensures that each step of the fold is forced to weak head normal -- form before being applied, avoiding the collection of thunks that -- would otherwise occur. This is often what you want to strictly reduce -- a finite list to a single, monolithic result (e.g. length). -- -- For a general Foldable structure this should be semantically -- identical to, -- --
-- foldl' f z = foldl' f z . toList --foldl' :: Foldable t => (b -> a -> b) -> b -> t a -> b -- | A type f is a Functor if it provides a function fmap -- which, given any types a and b lets you apply any -- function from (a -> b) to turn an f a into an -- f b, preserving the structure of f. Furthermore -- f needs to adhere to the following: -- -- -- -- Note, that the second law follows from the free theorem of the type -- fmap and the first law, so you need only check that the former -- condition holds. class Functor (f :: Type -> Type) -- | Using ApplicativeDo: 'fmap f as' can be -- understood as the do expression -- --
-- do a <- as -- pure (f a) ---- -- with an inferred Functor constraint. fmap :: Functor f => (a -> b) -> f a -> f b -- | Replace all locations in the input with the same value. The default -- definition is fmap . const, but this may be -- overridden with a more efficient version. -- -- Using ApplicativeDo: 'a <$ bs' can be -- understood as the do expression -- --
-- do bs -- pure a ---- -- with an inferred Functor constraint. (<$) :: Functor f => a -> f b -> f a infixl 4 <$ -- | Flipped version of <$. -- -- Using ApplicativeDo: 'as $> b' can be -- understood as the do expression -- --
-- do as -- pure b ---- -- with an inferred Functor constraint. -- --
-- >>> Nothing $> "foo" -- Nothing -- -- >>> Just 90210 $> "foo" -- Just "foo" ---- -- Replace the contents of an Either Int -- Int with a constant String, resulting in an -- Either Int String: -- --
-- >>> Left 8675309 $> "foo" -- Left 8675309 -- -- >>> Right 8675309 $> "foo" -- Right "foo" ---- -- Replace each element of a list with a constant String: -- --
-- >>> [1,2,3] $> "foo" -- ["foo","foo","foo"] ---- -- Replace the second element of a pair with a constant String: -- --
-- >>> (1,2) $> "foo" -- (1,"foo") --($>) :: Functor f => f a -> b -> f b infixl 4 $> -- | An infix synonym for fmap. -- -- The name of this operator is an allusion to $. Note the -- similarities between their types: -- --
-- ($) :: (a -> b) -> a -> b -- (<$>) :: Functor f => (a -> b) -> f a -> f b ---- -- Whereas $ is function application, <$> is function -- application lifted over a Functor. -- --
-- >>> show <$> Nothing -- Nothing -- -- >>> show <$> Just 3 -- Just "3" ---- -- Convert from an Either Int Int to an -- Either Int String using show: -- --
-- >>> show <$> Left 17 -- Left 17 -- -- >>> show <$> Right 17 -- Right "17" ---- -- Double each element of a list: -- --
-- >>> (*2) <$> [1,2,3] -- [2,4,6] ---- -- Apply even to the second element of a pair: -- --
-- >>> even <$> (2,2) -- (2,True) --(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 <$> -- | void value discards or ignores the result of -- evaluation, such as the return value of an IO action. -- -- Using ApplicativeDo: 'void as' can be -- understood as the do expression -- --
-- do as -- pure () ---- -- with an inferred Functor constraint. -- --
-- >>> void Nothing -- Nothing -- -- >>> void (Just 3) -- Just () ---- -- Replace the contents of an Either Int -- Int with unit, resulting in an Either -- Int (): -- --
-- >>> void (Left 8675309) -- Left 8675309 -- -- >>> void (Right 8675309) -- Right () ---- -- Replace every element of a list with unit: -- --
-- >>> void [1,2,3] -- [(),(),()] ---- -- Replace the second element of a pair with unit: -- --
-- >>> void (1,2) -- (1,()) ---- -- Discard the result of an IO action: -- --
-- >>> mapM print [1,2] -- 1 -- 2 -- [(),()] -- -- >>> void $ mapM print [1,2] -- 1 -- 2 --void :: Functor f => f a -> f () -- | A functor with application, providing operations to -- --
-- (<*>) = liftA2 id ---- --
-- liftA2 f x y = f <$> x <*> y ---- -- Further, any definition must satisfy the following: -- --
pure id <*> v = -- v
pure (.) <*> u -- <*> v <*> w = u <*> (v -- <*> w)
pure f <*> -- pure x = pure (f x)
u <*> pure y = -- pure ($ y) <*> u
-- forall x y. p (q x y) = f x . g y ---- -- it follows from the above that -- --
-- liftA2 p (liftA2 q u v) = liftA2 f u . liftA2 g v ---- -- If f is also a Monad, it should satisfy -- -- -- -- (which implies that pure and <*> satisfy the -- applicative functor laws). class Functor f => Applicative (f :: Type -> Type) -- | Lift a value. pure :: Applicative f => a -> f a -- | Sequential application. -- -- A few functors support an implementation of <*> that is -- more efficient than the default one. -- -- Using ApplicativeDo: 'fs <*> as' can be -- understood as the do expression -- --
-- do f <- fs -- a <- as -- pure (f a) --(<*>) :: Applicative f => f (a -> b) -> f a -> f b -- | Lift a binary function to actions. -- -- Some functors support an implementation of liftA2 that is more -- efficient than the default one. In particular, if fmap is an -- expensive operation, it is likely better to use liftA2 than to -- fmap over the structure and then use <*>. -- -- This became a typeclass method in 4.10.0.0. Prior to that, it was a -- function defined in terms of <*> and fmap. -- -- Using ApplicativeDo: 'liftA2 f as bs' can be -- understood as the do expression -- --
-- do a <- as -- b <- bs -- pure (f a b) --liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c infixl 4 <*> -- | Conditional execution of Applicative expressions. For example, -- --
-- when debug (putStrLn "Debugging") ---- -- will output the string Debugging if the Boolean value -- debug is True, and otherwise do nothing. when :: Applicative f => Bool -> f () -> f () -- | The reverse of when. unless :: Applicative f => Bool -> f () -> f () -- | Like when, but where the test can be monadic. whenM :: Monad m => m Bool -> m () -> m () -- | Perform some operation on Just, given the field inside the -- Just. -- --
-- whenJust Nothing print == pure () -- whenJust (Just 1) print == print 1 --whenJust :: Applicative m => Maybe a -> (a -> m ()) -> m () -- | Functors representing data structures that can be traversed from left -- to right. -- -- A definition of traverse must satisfy the following laws: -- --
-- t :: (Applicative f, Applicative g) => f a -> g a ---- -- preserving the Applicative operations, i.e. -- --
-- t (pure x) = pure x -- t (f <*> x) = t f <*> t x ---- -- and the identity functor Identity and composition functors -- Compose are from Data.Functor.Identity and -- Data.Functor.Compose. -- -- A result of the naturality law is a purity law for traverse -- --
-- traverse pure = pure ---- -- (The naturality law is implied by parametricity and thus so is the -- purity law [1, p15].) -- -- Instances are similar to Functor, e.g. given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Traversable Tree where -- traverse f Empty = pure Empty -- traverse f (Leaf x) = Leaf <$> f x -- traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r ---- -- This is suitable even for abstract types, as the laws for -- <*> imply a form of associativity. -- -- The superclass instances should satisfy the following: -- --
-- >>> for_ [1..4] print -- 1 -- 2 -- 3 -- 4 --for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () -- | This generalizes the list-based filter function. filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] -- | The Monad class defines the basic operations over a -- monad, a concept from a branch of mathematics known as -- category theory. From the perspective of a Haskell programmer, -- however, it is best to think of a monad as an abstract datatype -- of actions. Haskell's do expressions provide a convenient -- syntax for writing monadic expressions. -- -- Instances of Monad should satisfy the following: -- --
-- do a <- as -- bs a --(>>=) :: Monad m => m a -> (a -> m b) -> m b -- | Sequentially compose two actions, discarding any value produced by the -- first, like sequencing operators (such as the semicolon) in imperative -- languages. -- -- 'as >> bs' can be understood as the do -- expression -- --
-- do as -- bs --(>>) :: Monad m => m a -> m b -> m b -- | Inject a value into the monadic type. return :: Monad m => a -> m a infixl 1 >>= infixl 1 >> -- | The join function is the conventional monad join operator. It -- is used to remove one level of monadic structure, projecting its bound -- argument into the outer level. -- -- 'join bss' can be understood as the do -- expression -- --
-- do bs <- bss -- bs ---- --
-- atomically :: STM a -> IO a ---- -- is used to run STM transactions atomically. So, by specializing -- the types of atomically and join to -- --
-- atomically :: STM (IO b) -> IO (IO b) -- join :: IO (IO b) -> IO b ---- -- we can compose them as -- --
-- join . atomically :: STM (IO b) -> IO b ---- -- to run an STM transaction and the IO action it returns. join :: Monad m => m (m a) -> m a -- | forM_ is mapM_ with its arguments flipped. For a version -- that doesn't ignore the results see forM. -- -- As of base 4.8.0.0, forM_ is just for_, specialized to -- Monad. forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m () -- | forM is mapM with its arguments flipped. For a version -- that ignores the results see forM_. forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) -- | Map each element of a structure to a monadic action, evaluate these -- actions from left to right, and ignore the results. For a version that -- doesn't ignore the results see mapM. -- -- As of base 4.8.0.0, mapM_ is just traverse_, specialized -- to Monad. mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m () -- | Evaluate each monadic action in the structure from left to right, and -- ignore the results. For a version that doesn't ignore the results see -- sequence. -- -- As of base 4.8.0.0, sequence_ is just sequenceA_, -- specialized to Monad. sequence_ :: (Foldable t, Monad m) => t (m a) -> m () -- | Same as >>=, but with the arguments interchanged. (=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 =<< -- | Left-to-right composition of Kleisli arrows. -- -- '(bs >=> cs) a' can be understood as the -- do expression -- --
-- do b <- bs a -- cs b --(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 >=> -- | The class of contravariant functors. -- -- Whereas in Haskell, one can think of a Functor as containing or -- producing values, a contravariant functor is a functor that can be -- thought of as consuming values. -- -- As an example, consider the type of predicate functions a -> -- Bool. One such predicate might be negative x = x < 0, -- which classifies integers as to whether they are negative. However, -- given this predicate, we can re-use it in other situations, providing -- we have a way to map values to integers. For instance, we can -- use the negative predicate on a person's bank balance to work -- out if they are currently overdrawn: -- --
-- newtype Predicate a = Predicate { getPredicate :: a -> Bool }
--
-- instance Contravariant Predicate where
-- contramap f (Predicate p) = Predicate (p . f)
-- | `- First, map the input...
-- `----- then apply the predicate.
--
-- overdrawn :: Predicate Person
-- overdrawn = contramap personBankBalance negative
--
--
-- Any instance should be subject to the following laws:
--
--
--
-- Note, that the second law follows from the free theorem of the type of
-- contramap and the first law, so you need only check that the
-- former condition holds.
class Contravariant (f :: Type -> Type)
contramap :: Contravariant f => (a -> b) -> f b -> f a
-- | This is an infix alias for contramap.
(>$<) :: Contravariant f => (a -> b) -> f b -> f a
infixl 4 >$<
data Predicate a
-- | This data type represents an equivalence relation.
--
-- Equivalence relations are expected to satisfy three laws:
--
-- -- >>> distribute [(+1),(+2)] 1 -- [2,3] ---- --
-- distribute = collect id -- distribute . distribute = id --distribute :: (Distributive g, Functor f) => f (g a) -> g (f a) -- | There are two ways to define a comonad: -- -- I. Provide definitions for extract and extend satisfying -- these laws: -- --
-- extend extract = id -- extract . extend f = f -- extend f . extend g = extend (f . extend g) ---- -- In this case, you may simply set fmap = liftW. -- -- These laws are directly analogous to the laws for monads and perhaps -- can be made clearer by viewing them as laws stating that Cokleisli -- composition must be associative, and has extract for a unit: -- --
-- f =>= extract = f -- extract =>= f = f -- (f =>= g) =>= h = f =>= (g =>= h) ---- -- II. Alternately, you may choose to provide definitions for -- fmap, extract, and duplicate satisfying these -- laws: -- --
-- extract . duplicate = id -- fmap extract . duplicate = id -- duplicate . duplicate = fmap duplicate . duplicate ---- -- In this case you may not rely on the ability to define fmap in -- terms of liftW. -- -- You may of course, choose to define both duplicate and -- extend. In that case you must also satisfy these laws: -- --
-- extend f = fmap f . duplicate -- duplicate = extend id -- fmap f = extend (f . extract) ---- -- These are the default definitions of extend and -- duplicate and the definition of liftW respectively. class Functor w => Comonad (w :: Type -> Type) -- |
-- extract . fmap f = f . extract --extract :: Comonad w => w a -> a -- |
-- duplicate = extend id -- fmap (fmap f) . duplicate = duplicate . fmap f --duplicate :: Comonad w => w a -> w (w a) -- |
-- extend f = fmap f . duplicate --extend :: Comonad w => (w a -> b) -> w a -> w b -- | Left-to-right Cokleisli composition (=>=) :: Comonad w => (w a -> b) -> (w b -> c) -> w a -> c infixr 1 =>= -- | extend in operator form (<<=) :: Comonad w => (w a -> b) -> w a -> w b infixr 1 <<= -- | Formally, the class Profunctor represents a profunctor from -- Hask -> Hask. -- -- Intuitively it is a bifunctor where the first argument is -- contravariant and the second argument is covariant. -- -- You can define a Profunctor by either defining dimap or -- by defining both lmap and rmap. -- -- If you supply dimap, you should ensure that: -- --
-- dimap id id ≡ id ---- -- If you supply lmap and rmap, ensure: -- --
-- lmap id ≡ id -- rmap id ≡ id ---- -- If you supply both, you should also ensure: -- --
-- dimap f g ≡ lmap f . rmap g ---- -- These ensure by parametricity: -- --
-- dimap (f . g) (h . i) ≡ dimap g h . dimap f i -- lmap (f . g) ≡ lmap g . lmap f -- rmap (f . g) ≡ rmap f . rmap g --class Profunctor (p :: Type -> Type -> Type) -- | Map over both arguments at the same time. -- --
-- dimap f g ≡ lmap f . rmap g --dimap :: Profunctor p => (a -> b) -> (c -> d) -> p b c -> p a d -- | Map the first argument contravariantly. -- --
-- lmap f ≡ dimap f id --lmap :: Profunctor p => (a -> b) -> p b c -> p a c -- | Map the second argument covariantly. -- --
-- rmap ≡ dimap id --rmap :: Profunctor p => (b -> c) -> p a b -> p a c -- | Generalizing Star of a strong Functor -- -- Note: Every Functor in Haskell is strong with respect to -- (,). -- -- This describes profunctor strength with respect to the product -- structure of Hask. -- -- http://www.riec.tohoku.ac.jp/~asada/papers/arrStrMnd.pdf class Profunctor p => Strong (p :: Type -> Type -> Type) -- | Laws: -- --
-- first' ≡ dimap swap swap . second' -- lmap fst ≡ rmap fst . first' -- lmap (second' f) . first' ≡ rmap (second' f) . first' -- first' . first' ≡ dimap assoc unassoc . first' where -- assoc ((a,b),c) = (a,(b,c)) -- unassoc (a,(b,c)) = ((a,b),c) --first' :: Strong p => p a b -> p (a, c) (b, c) -- | Laws: -- --
-- second' ≡ dimap swap swap . first' -- lmap snd ≡ rmap snd . second' -- lmap (first' f) . second' ≡ rmap (first' f) . second' -- second' . second' ≡ dimap unassoc assoc . second' where -- assoc ((a,b),c) = (a,(b,c)) -- unassoc (a,(b,c)) = ((a,b),c) --second' :: Strong p => p a b -> p (c, a) (c, b) -- | The generalization of Costar of Functor that is strong -- with respect to Either. -- -- Note: This is also a notion of strength, except with regards to -- another monoidal structure that we can choose to equip Hask with: the -- cocartesian coproduct. class Profunctor p => Choice (p :: Type -> Type -> Type) -- | Laws: -- --
-- left' ≡ dimap swapE swapE . right' where -- swapE :: Either a b -> Either b a -- swapE = either Right Left -- rmap Left ≡ lmap Left . left' -- lmap (right f) . left' ≡ rmap (right f) . left' -- left' . left' ≡ dimap assocE unassocE . left' where -- assocE :: Either (Either a b) c -> Either a (Either b c) -- assocE (Left (Left a)) = Left a -- assocE (Left (Right b)) = Right (Left b) -- assocE (Right c) = Right (Right c) -- unassocE :: Either a (Either b c) -> Either (Either a b) c -- unassocE (Left a) = Left (Left a) -- unassocE (Right (Left b)) = Left (Right b) -- unassocE (Right (Right c)) = Right c --left' :: Choice p => p a b -> p (Either a c) (Either b c) -- | Laws: -- --
-- right' ≡ dimap swapE swapE . left' where -- swapE :: Either a b -> Either b a -- swapE = either Right Left -- rmap Right ≡ lmap Right . right' -- lmap (left f) . right' ≡ rmap (left f) . right' -- right' . right' ≡ dimap unassocE assocE . right' where -- assocE :: Either (Either a b) c -> Either a (Either b c) -- assocE (Left (Left a)) = Left a -- assocE (Left (Right b)) = Right (Left b) -- assocE (Right c) = Right (Right c) -- unassocE :: Either a (Either b c) -> Either (Either a b) c -- unassocE (Left a) = Left (Left a) -- unassocE (Right (Left b)) = Left (Right b) -- unassocE (Right (Right c)) = Right c --right' :: Choice p => p a b -> p (Either c a) (Either c b) -- | A class for categories. Instances should satisfy the laws -- --
arr id = id
arr (f >>> g) = arr f >>> -- arr g
first (arr f) = arr (first -- f)
first (f >>> g) = first f >>> -- first g
first f >>> arr fst = -- arr fst >>> f
first f >>> arr (id *** g) = -- arr (id *** g) >>> first f
first (first f) >>> arr assoc = -- arr assoc >>> first f
-- assoc ((a,b),c) = (a,(b,c)) ---- -- The other combinators have sensible default definitions, which may be -- overridden for efficiency. class Category a => Arrow (a :: Type -> Type -> Type) -- | Lift a function to an arrow. arr :: Arrow a => (b -> c) -> a b c -- | Send the first component of the input through the argument arrow, and -- copy the rest unchanged to the output. first :: Arrow a => a b c -> a (b, d) (c, d) -- | A mirror image of first. -- -- The default definition may be overridden with a more efficient version -- if desired. second :: Arrow a => a b c -> a (d, b) (d, c) -- | Split the input between the two argument arrows and combine their -- output. Note that this is in general not a functor. -- -- The default definition may be overridden with a more efficient version -- if desired. (***) :: Arrow a => a b c -> a b' c' -> a (b, b') (c, c') -- | Fanout: send the input to both argument arrows and combine their -- output. -- -- The default definition may be overridden with a more efficient version -- if desired. (&&&) :: Arrow a => a b c -> a b c' -> a b (c, c') infixr 3 *** infixr 3 &&& -- | Kleisli arrows of a monad. data Kleisli (m :: Type -> Type) a b -- | Left-to-right composition (>>>) :: forall k cat (a :: k) (b :: k) (c :: k). Category cat => cat a b -> cat b c -> cat a c infixr 1 >>> -- | Right-to-left composition (<<<) :: forall k cat (b :: k) (c :: k) (a :: k). Category cat => cat b c -> cat a b -> cat a c infixr 1 <<< type Env e = EnvT e Identity data EnvT e (w :: Type -> Type) a EnvT :: e -> w a -> EnvT e (w :: Type -> Type) a -- | Create an Env using an environment and a value env :: e -> a -> Env e a runEnv :: Env e a -> (e, a) runEnvT :: EnvT e w a -> (e, w a) -- | A record is parameterized by a universe u, an interpretation -- f and a list of rows rs. The labels or indices of -- the record are given by inhabitants of the kind u; the type -- of values at any label r :: u is given by its interpretation -- f r :: *. data Rec (a :: u -> Type) (b :: [u]) [RNil] :: forall u (a :: u -> Type). Rec a ('[] :: [u]) [:&] :: forall u (a :: u -> Type) (r :: u) (rs :: [u]). !a r -> !Rec a rs -> Rec a (r : rs) infixr 7 :& -- | Rec _ rs with labels in kind u gives rise to -- a functor Hask^u -> Hask; that is, a natural -- transformation between two interpretation functors f,g may be -- used to transport a value from Rec f rs to Rec -- g rs. class RMap (rs :: [u]) -- | A record may be traversed with respect to its interpretation functor. -- This can be used to yank (some or all) effects from the fields of the -- record to the outside of the record. rtraverse :: forall u h f g (rs :: [u]). Applicative h => (forall (x :: u). () => f x -> h (g x)) -> Rec f rs -> h (Rec g rs) -- | Takes a larger record to a smaller one by forgetting fields. This is -- rcastC with the type arguments reordered for more convenient -- usage with TypeApplications. rcast :: forall k1 k2 (rs :: [k1]) (ss :: [k1]) (f :: k2 -> Type) record (is :: [Nat]). (RecSubset record rs ss is, RecSubsetFCtx record f) => record f ss -> record f rs -- | CoRef f rs represents a single value of type f r for -- some r in rs. data CoRec (a :: u -> Type) (b :: [u]) -- | Witness that r is an element of rs using ∈ -- (RElem with RIndex) from Vinyl. [CoVal] :: forall u (r :: u) (b :: [u]) (a :: u -> Type). r ∈ b => !a r -> CoRec a b -- | A shorthand for RElem which supplies its index. type (r :: k) ∈ (rs :: [k]) = RElem r rs RIndex r rs type (f :: l -> Type) :. (g :: k -> l) = Compose f g infixr 9 :. data Compose (f :: l -> Type) (g :: k -> l) (x :: k) -- | Apply a function to a value whose type is the application of the -- Compose type constructor. This works under the Compose -- newtype wrapper. onCompose :: forall l1 k1 l2 f (g :: k1 -> l1) (a :: k1) h (k2 :: k1 -> l2). (f (g a) -> h (k2 a)) -> (f :. g) a -> (h :. k2) a -- | Representable types of kind *. This class is derivable in GHC -- with the DeriveGeneric flag on. -- -- A Generic instance must satisfy the following laws: -- --
-- from . to ≡ id -- to . from ≡ id --class Generic a -- | This is the simplest representation of UTC. It consists of the day -- number, and a time offset from midnight. Note that if a day has a leap -- second added to it, it will have 86401 seconds. data UTCTime -- | Path of some base and type. -- -- The type variables are: -- --
-- $(mkAbsDir x) </> $(mkRelDir y) = $(mkAbsDir (x ++ "/" ++ y)) ---- --
-- $(mkAbsDir x) </> $(mkRelFile y) = $(mkAbsFile (x ++ "/" ++ y)) ---- --
-- $(mkRelDir x) </> $(mkRelDir y) = $(mkRelDir (x ++ "/" ++ y)) ---- --
-- $(mkRelDir x) </> $(mkRelFile y) = $(mkRelFile (x ++ "/" ++ y)) ---- -- The following are proven not possible to express: -- --
-- $(mkAbsFile …) </> x ---- --
-- $(mkRelFile …) </> x ---- --
-- x </> $(mkAbsFile …) ---- --
-- x </> $(mkAbsDir …) --(>) :: Path b Dir -> Path Rel t -> Path b t infixr 5 > -- | flip f takes its (first) two arguments in the reverse -- order of f. -- --
-- >>> flip (++) "hello" "world" -- "worldhello" --flip :: (a -> b -> c) -> b -> a -> c -- | Extracts from a list of Either all the Right elements. -- All the Right elements are extracted in order. -- --
-- >>> let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ] -- -- >>> rights list -- [3,7] --rights :: [Either a b] -> [b] -- | The kind of types with lifted values. For example Int :: -- Type. type Type = Type -- | The kind of constraints, like Show a data Constraint -- | Kind of type-level expressions indexed by their result type. type Exp a = a -> Type -- | Expression evaluator. type family Eval (e :: Exp a) :: a -- | Synonym of Map to avoid name clashes. type FMap = Map :: a -> Exp b -> f a -> f b -> Type -- | Any type that you wish to throw or catch as an exception must be an -- instance of the Exception class. The simplest case is a new -- exception type directly below the root: -- --
-- data MyException = ThisException | ThatException -- deriving Show -- -- instance Exception MyException ---- -- The default method definitions in the Exception class do what -- we need in this case. You can now throw and catch -- ThisException and ThatException as exceptions: -- --
-- *Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException))
-- Caught ThisException
--
--
-- In more complicated examples, you may wish to define a whole hierarchy
-- of exceptions:
--
-- -- --------------------------------------------------------------------- -- -- Make the root exception type for all the exceptions in a compiler -- -- data SomeCompilerException = forall e . Exception e => SomeCompilerException e -- -- instance Show SomeCompilerException where -- show (SomeCompilerException e) = show e -- -- instance Exception SomeCompilerException -- -- compilerExceptionToException :: Exception e => e -> SomeException -- compilerExceptionToException = toException . SomeCompilerException -- -- compilerExceptionFromException :: Exception e => SomeException -> Maybe e -- compilerExceptionFromException x = do -- SomeCompilerException a <- fromException x -- cast a -- -- --------------------------------------------------------------------- -- -- Make a subhierarchy for exceptions in the frontend of the compiler -- -- data SomeFrontendException = forall e . Exception e => SomeFrontendException e -- -- instance Show SomeFrontendException where -- show (SomeFrontendException e) = show e -- -- instance Exception SomeFrontendException where -- toException = compilerExceptionToException -- fromException = compilerExceptionFromException -- -- frontendExceptionToException :: Exception e => e -> SomeException -- frontendExceptionToException = toException . SomeFrontendException -- -- frontendExceptionFromException :: Exception e => SomeException -> Maybe e -- frontendExceptionFromException x = do -- SomeFrontendException a <- fromException x -- cast a -- -- --------------------------------------------------------------------- -- -- Make an exception type for a particular frontend compiler exception -- -- data MismatchedParentheses = MismatchedParentheses -- deriving Show -- -- instance Exception MismatchedParentheses where -- toException = frontendExceptionToException -- fromException = frontendExceptionFromException ---- -- We can now catch a MismatchedParentheses exception as -- MismatchedParentheses, SomeFrontendException or -- SomeCompilerException, but not other types, e.g. -- IOException: -- --
-- *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses))
-- Caught MismatchedParentheses
-- *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException))
-- Caught MismatchedParentheses
-- *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException))
-- Caught MismatchedParentheses
-- *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: IOException))
-- *** Exception: MismatchedParentheses
--
class (Typeable e, Show e) => Exception e
-- | Render this exception value in a human-friendly manner.
--
-- Default implementation: show.
displayException :: Exception e => e -> String
-- | The SomeException type is the root of the exception type
-- hierarchy. When an exception of type e is thrown, behind the
-- scenes it is encapsulated in a SomeException.
data SomeException