{-# LANGUAGE ExistentialQuantification, ScopedTypeVariables, Trustworthy #-} {- This module is part of Chatty. Copyleft (c) 2014 Marvin Cohrs All wrongs reversed. Sharing is an act of love, not crime. Please share Chatty with everyone you like. Chatty is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Chatty is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with Chatty. If not, see . -} -- | Provides a variable-storing monad and functions for access. Not recommended. Use IORef, STRef or the like. Really. module Data.Chatty.Atoms where import Control.Applicative import Control.Arrow import qualified Control.Category as C import Control.Monad import Control.Monad.Trans.Class import Control.Monad.IO.Class import Data.Dynamic import Data.Typeable import Data.Chatty.AVL import Data.Chatty.Counter import Unsafe.Coerce -- | Phantom type for atom IDs data Atom a = Atom Int | forall b. FunAtom Int (Atom b) (b -> a) (b -> a -> b) | forall b c. FunAtom2 Int (Atom b) (Atom c) ((b,c) -> a) ((b,c) -> a -> (b,c)) instance Eq (Atom a) where (Atom n) == (Atom m) = n == m (FunAtom i _ _ _) == (FunAtom j _ _ _) = i == j (FunAtom2 i _ _ _ _) == (FunAtom2 j _ _ _ _) = i == j _ == _ = False instance Ord (Atom a) where (Atom n) `compare` (Atom m) = n `compare` m (FunAtom i _ _ _) `compare` (Atom m) = i `compare` m (FunAtom2 i _ _ _ _) `compare` (Atom m) = i `compare` m (Atom n) `compare` (FunAtom j _ _ _) = n `compare` j (FunAtom i _ _ _) `compare` (FunAtom j _ _ _) = i `compare` j (FunAtom2 i _ _ _ _) `compare` (FunAtom j _ _ _) = i `compare` j (Atom n) `compare` (FunAtom2 j _ _ _ _) = n `compare` j (FunAtom i _ _ _) `compare` (FunAtom2 j _ _ _ _) = i `compare` j (FunAtom2 i _ _ _ _) `compare` (FunAtom2 j _ _ _ _) = i `compare` j newtype Container = Container () -- | The storage monad newtype AtomStoreT m a = AtomStore { runAtomStoreT :: AVL (Int, Container) -> m (a,AVL (Int,Container)) } instance Functor m => Functor (AtomStoreT m) where fmap f a = AtomStore $ \s -> fmap (first f) $ runAtomStoreT a s instance (Functor m, Monad m) => Applicative (AtomStoreT m) where pure = return (<*>) = ap instance Monad m => Monad (AtomStoreT m) where return a = AtomStore $ \s -> return (a,s) m >>= f = AtomStore $ \s -> do (a,s') <- runAtomStoreT m s; runAtomStoreT (f a) s' instance MonadTrans AtomStoreT where lift m = AtomStore $ \s -> do a <- m; return (a,s) instance MonadIO m => MonadIO (AtomStoreT m) where liftIO = lift . liftIO instance ChCounter m => ChCounter (AtomStoreT m) where countOn = lift countOn -- | Typeclass for all atom-storing monads. class ChCounter m => ChAtoms m where -- | Reserve a new atom. newAtom :: m (Atom v) newAtom = liftM Atom countOn -- | Construct a new functional atom. funAtom :: Atom b -> (b -> a) -> (b -> a -> b) -> m (Atom a) funAtom b r p = do i <- countOn return $ FunAtom i b r p -- | Construct a new doubly-source functional atom funAtom2 :: Atom b -> Atom c -> ((b,c) -> a) -> ((b,c) -> a -> (b,c)) -> m (Atom a) funAtom2 b c r p = do i <- countOn return $ FunAtom2 i b c r p -- | Save a value for the given atom. putAtom :: Atom v -> v -> m () -- | Get the value from a given atom. getAtom :: Atom v -> m v -- | Dispose the given atom. dispAtom :: Atom v -> m () -- | Clone the given atom. cloneAtom :: Atom v -> m (Atom v) cloneAtom a = do b <- newAtom v <- getAtom a putAtom b v return b instance ChCounter m => ChAtoms (AtomStoreT m) where putAtom (Atom a) v = AtomStore $ \s -> return ((),avlInsert (a,unsafeCoerce v) s) putAtom (FunAtom _ b _ p) v = do bv <- getAtom b putAtom b $ p bv v putAtom (FunAtom2 _ b c _ p) v = do bv <- getAtom b cv <- getAtom c let (bv',cv') = p (bv, cv) v putAtom b bv' putAtom c cv' getAtom (Atom a) = AtomStore $ \s -> let Just v = avlLookup a s in return (unsafeCoerce v,s) getAtom (FunAtom _ b g _) = liftM g $ getAtom b getAtom (FunAtom2 _ b c g _) = do bv <- getAtom b cv <- getAtom c return $ g (bv,cv) dispAtom (Atom a) = AtomStore $ \s -> return ((),avlRemove a s) dispAtom (FunAtom _ _ _ _) = return () dispAtom (FunAtom2 _ _ _ _ _) = return () -- Stop it. This just doesn't work safely. {-- | Arrow type operating on atoms. Works by overwriting the educt. You should really *not* use -- this for general a->b arrows, but only for a->a, unless you are sure that all Atom a references -- are gone! Otherwise segfaults are waiting for you! newtype Atomar m a b = Atomar { runAtomar :: Atom a -> m (Atom b) } instance ChAtoms m => C.Category (Atomar m) where id = Atomar return a . b = Atomar (runAtomar a <=< runAtomar b) instance ChAtoms m => Arrow (Atomar m) where arr = Atomar . mapAtom first f = Atomar $ \a -> do let afst = funAtom a fst $ \(_,s) f -> (f,s) mapAtom afst -} -- | Run a pure function on atoms. mapAtom :: ChAtoms m => (a -> a) -> Atom a -> m () mapAtom f a = do v <- getAtom a putAtom a $ f v -- | Arrow type operating on atoms. Works by cloning the educt, then overwriting the clone. -- You shouldn't use this inside long-term environments, as massive usage blows up the memory. newtype Redundant m a b = Redundant { runRedundant :: Atom a -> m (Atom b) } instance ChAtoms m => C.Category (Redundant m) where id = Redundant return a . b = Redundant (runRedundant a <=< runRedundant b) instance ChAtoms m => Arrow (Redundant m) where arr f = Redundant $ \a -> do v <- getAtom a b <- newAtom putAtom b $ f v return b first f = Redundant $ \a -> do c <- runRedundant f =<< funAtom a fst (\(_, s) f -> (f, s)) funAtom2 a c (\((_,s),f) -> (f,s)) $ \((e,s),f) (f',s') -> ((e,s'),f')