{-# LANGUAGE PatternGuards #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE ViewPatterns #-} {-# OPTIONS_GHC -fcontext-stack=21 #-} -- | Transformations of the Normalization process module CLaSH.Normalize.Transformations ( appProp , bindNonRep , liftNonRep , caseLet , caseCon , caseCase , inlineNonRep , typeSpec , nonRepSpec , etaExpansionTL , nonRepANF , bindConstantVar , constantSpec , makeANF , deadCode , topLet , recToLetRec , inlineClosed , inlineHO , inlineSmall , simpleCSE ) where import qualified Control.Lens as Lens import qualified Control.Monad as Monad import Control.Monad.Writer (WriterT (..), lift, tell) import qualified Data.Either as Either import qualified Data.HashMap.Lazy as HashMap import qualified Data.List as List import qualified Data.Maybe as Maybe import Unbound.LocallyNameless (Bind, Embed (..), bind, embed, rec, unbind, unembed, unrebind, unrec, name2String) import Unbound.LocallyNameless.Ops (unsafeUnbind) import CLaSH.Core.DataCon (DataCon, dcName, dcTag, dcUnivTyVars) import CLaSH.Core.FreeVars (termFreeIds, termFreeTyVars, termFreeVars, typeFreeVars) import CLaSH.Core.Pretty (showDoc) import CLaSH.Core.Subst (substTm, substTms, substTyInTm, substTysinTm) import CLaSH.Core.Term (LetBinding, Pat (..), Term (..)) import CLaSH.Core.Type (TypeView (..), applyFunTy, applyTy, splitFunTy, tyView) import CLaSH.Core.Util (collectArgs, idToVar, isCon, isFun, isLet, isPolyFun, isPrim, isVar, mkApps, mkLams, mkTmApps, termSize,termType) import CLaSH.Core.Var (Id, Var (..)) import CLaSH.Netlist.Util (representableType, splitNormalized) import CLaSH.Normalize.Types import CLaSH.Normalize.Util import CLaSH.Rewrite.Combinators import CLaSH.Rewrite.Types import CLaSH.Rewrite.Util import CLaSH.Util -- | Inline non-recursive, non-representable let-bindings bindNonRep :: NormRewrite bindNonRep = inlineBinders nonRepTest where nonRepTest (Id idName tyE, exprE) = (&&) <$> (not <$> (representableType <$> Lens.use typeTranslator <*> Lens.use tcCache <*> pure (unembed tyE))) <*> ((notElem idName . snd) <$> localFreeVars (unembed exprE)) nonRepTest _ = return False -- | Lift non-representable let-bindings liftNonRep :: NormRewrite liftNonRep = liftBinders nonRepTest where nonRepTest (Id idName tyE, exprE) = (&&) <$> (not <$> (representableType <$> Lens.use typeTranslator <*> Lens.use tcCache <*> pure (unembed tyE))) <*> ((elem idName . snd) <$> localFreeVars (unembed exprE)) nonRepTest _ = return False -- | Specialize functions on their type typeSpec :: NormRewrite typeSpec ctx e@(TyApp e1 ty) | (Var _ _, args) <- collectArgs e1 , null $ typeFreeVars ty , (_, []) <- Either.partitionEithers args = specializeNorm False ctx e typeSpec _ e = return e -- | Specialize functions on their non-representable argument nonRepSpec :: NormRewrite nonRepSpec ctx e@(App e1 e2) | (Var _ _, args) <- collectArgs e1 , (_, []) <- Either.partitionEithers args , null $ termFreeTyVars e2 = R $ do tcm <- Lens.use tcCache e2Ty <- termType tcm e2 localVar <- isLocalVar e2 nonRepE2 <- not <$> (representableType <$> Lens.use typeTranslator <*> Lens.use tcCache <*> pure e2Ty) if nonRepE2 && not localVar then runR $ specializeNorm True ctx e else return e nonRepSpec _ e = return e -- | Lift the let-bindings out of the subject of a Case-decomposition caseLet :: NormRewrite caseLet _ (Case (Letrec b) ty alts) = R $ do (xes,e) <- unbind b changed . Letrec $ bind xes (Case e ty alts) caseLet _ e = return e -- | Move a Case-decomposition from the subject of a Case-decomposition to the alternatives caseCase :: NormRewrite caseCase _ e@(Case (Case scrut alts1Ty alts1) alts2Ty alts2) = R $ do ty1Rep <- representableType <$> Lens.use typeTranslator <*> Lens.use tcCache <*> pure alts1Ty if not ty1Rep then do newAlts <- mapM ( return . uncurry bind . second (\altE -> Case altE alts2Ty alts2) <=< unbind ) alts1 changed $ Case scrut alts2Ty newAlts else return e caseCase _ e = return e -- | Inline function with a non-representable result if it's the subject -- of a Case-decomposition inlineNonRep :: NormRewrite inlineNonRep _ e@(Case scrut altsTy alts) | (Var _ f, args) <- collectArgs scrut = R $ do isInlined <- liftR $ alreadyInlined f limit <- liftR $ Lens.use inlineLimit tcm <- Lens.use tcCache scrutTy <- termType tcm scrut let noException = not (exception scrutTy) if noException && (Maybe.fromMaybe 0 isInlined) > limit then do cf <- liftR $ Lens.use curFun ty <- termType tcm scrut error $ $(curLoc) ++ "InlineNonRep: " ++ show f ++ " already inlined " ++ show limit ++ " times in:" ++ show cf ++ ", " ++ showDoc ty else do bodyMaybe <- fmap (HashMap.lookup f) $ Lens.use bindings nonRepScrut <- not <$> (representableType <$> Lens.use typeTranslator <*> Lens.use tcCache <*> pure scrutTy) case (nonRepScrut, bodyMaybe) of (True,Just (_, scrutBody)) -> do Monad.when noException (liftR $ addNewInline f) changed $ Case (mkApps scrutBody args) altsTy alts _ -> return e where exception (tyView -> TyConApp (name2String -> "GHC.Num.Num") [arg]) = numDictArg arg exception _ = False numDictArg arg = case tyView arg of TyConApp tcNm arg' -> case name2String tcNm of "CLaSH.Sized.Signed.Signed" -> True "CLaSH.Sized.Unsigned.Unsigned" -> True "CLaSH.Sized.Fixed.Fixed" -> True "CLaSH.Signal.Types.Signal" -> numDictArg (head arg') "CLaSH.Signal.Types.CSignal" -> numDictArg (arg'!!1) "GHC.Integer.Type.Integer" -> True "GHC.Types.Int" -> True _ -> False _ -> False inlineNonRep _ e = return e -- | Specialize a Case-decomposition (replace by the RHS of an alternative) if -- the subject is (an application of) a DataCon; or if there is only a single -- alternative that doesn't reference variables bound by the pattern. caseCon :: NormRewrite caseCon _ c@(Case scrut _ alts) | (Data dc, args) <- collectArgs scrut = R $ do alts' <- mapM unbind alts let dcAltM = List.find (equalCon dc . fst) alts' case dcAltM of Just (DataPat _ pxs, e) -> let (tvs,xs) = unrebind pxs fvs = termFreeIds e (binds,_) = List.partition ((`elem` fvs) . varName . fst) $ zip xs (Either.lefts args) e' = case binds of [] -> e _ -> Letrec $ bind (rec $ map (second embed) binds) e substTyMap = zip (map varName tvs) (drop (length $ dcUnivTyVars dc) (Either.rights args)) in changed (substTysinTm substTyMap e') _ -> case alts' of ((DefaultPat,e):_) -> changed e _ -> error $ $(curLoc) ++ "Report as bug: caseCon error: " ++ showDoc c where equalCon dc (DataPat dc' _) = dcTag dc == dcTag (unembed dc') equalCon _ _ = False caseCon _ c@(Case (Literal l) _ alts) = R $ do alts' <- mapM unbind alts let ltAltsM = List.find (equalLit . fst) alts' case ltAltsM of Just (LitPat _,e) -> changed e _ -> case alts' of ((DefaultPat,e):_) -> changed e _ -> error $ $(curLoc) ++ "Report as bug: caseCon error: " ++ showDoc c where equalLit (LitPat l') = l == (unembed l') equalLit _ = False caseCon _ e@(Case _ _ [alt]) = R $ do (pat,altE) <- unbind alt case pat of DefaultPat -> changed altE LitPat _ -> changed altE DataPat _ pxs -> let (tvs,xs) = unrebind pxs (ftvs,fvs) = termFreeVars altE usedTvs = filter ((`elem` ftvs) . varName) tvs usedXs = filter ((`elem` fvs) . varName) xs in case (usedTvs,usedXs) of ([],[]) -> changed altE _ -> return e caseCon ctx e@(Case subj ty alts) | isConstant subj = do tcm <- Lens.use tcCache lvl <- Lens.view dbgLevel reduceConstant <- Lens.use evaluator case reduceConstant tcm subj of Data dc -> caseCon ctx (Case (Data dc) ty alts) Literal l -> caseCon ctx (Case (Literal l) ty alts) subj' -> traceIf (lvl > DebugNone) ("Irreducible constant as case subject: " ++ showDoc subj ++ "\nCan be reduced to: " ++ showDoc subj') (return e) caseCon _ e = return e -- | Bring an application of a DataCon or Primitive in ANF, when the argument is -- is considered non-representable nonRepANF :: NormRewrite nonRepANF ctx e@(App appConPrim arg) | (conPrim, _) <- collectArgs e , isCon conPrim || isPrim conPrim = R $ do untranslatable <- isUntranslatable arg case (untranslatable,arg) of (True,Letrec b) -> do (binds,body) <- unbind b changed . Letrec $ bind binds (App appConPrim body) (True,Case {}) -> runR $ specializeNorm True ctx e (True,Lam _) -> runR $ specializeNorm True ctx e _ -> return e nonRepANF _ e = return e -- | Ensure that top-level lambda's eventually bind a let-expression of which -- the body is a variable-reference. topLet :: NormRewrite topLet ctx e | all isLambdaBodyCtx ctx && not (isLet e) = R $ do untranslatable <- isUntranslatable e if untranslatable then return e else do tcm <- Lens.use tcCache (argId,argVar) <- mkTmBinderFor tcm "topLet" e changed . Letrec $ bind (rec [(argId,embed e)]) argVar topLet ctx e@(Letrec b) | all isLambdaBodyCtx ctx = R $ do (binds,body) <- unbind b localVar <- isLocalVar body untranslatable <- isUntranslatable body if localVar || untranslatable then return e else do tcm <- Lens.use tcCache (argId,argVar) <- mkTmBinderFor tcm "topLet" body changed . Letrec $ bind (rec $ unrec binds ++ [(argId,embed body)]) argVar topLet _ e = return e -- Misc rewrites -- | Remove unused let-bindings deadCode :: NormRewrite deadCode _ e@(Letrec binds) = R $ do (xes, body) <- fmap (first unrec) $ unbind binds let bodyFVs = termFreeIds body (xesUsed,xesOther) = List.partition ( (`elem` bodyFVs ) . varName . fst ) xes xesUsed' = findUsedBndrs [] xesUsed xesOther if length xesUsed' /= length xes then changed . Letrec $ bind (rec xesUsed') body else return e where findUsedBndrs used [] _ = used findUsedBndrs used explore other = let fvsUsed = concatMap (termFreeIds . unembed . snd) explore (explore',other') = List.partition ( (`elem` fvsUsed) . varName . fst ) other in findUsedBndrs (used ++ explore) explore' other' deadCode _ e = return e -- | Inline let-bindings when the RHS is either a local variable reference or -- is constant bindConstantVar :: NormRewrite bindConstantVar = inlineBinders test where test (_,Embed e) = (||) <$> isLocalVar e <*> pure (isConstant e) -- | Inline nullary/closed functions inlineClosed :: NormRewrite inlineClosed _ e@(collectArgs -> (Var _ f,args)) | all (either isConstant (const True)) args = R $ do untranslatable <- isUntranslatable e if untranslatable then return e else do bodyMaybe <- fmap (HashMap.lookup f) $ Lens.use bindings case bodyMaybe of Just (_,body) -> changed (mkApps body args) _ -> return e inlineClosed _ e@(Var _ f) = R $ do tcm <- Lens.use tcCache closed <- isClosed tcm e untranslatable <- isUntranslatable e if closed && not untranslatable then do bodyMaybe <- fmap (HashMap.lookup f) $ Lens.use bindings case bodyMaybe of Just (_,body) -> changed body _ -> return e else return e inlineClosed _ e = return e -- | Inline small functions inlineSmall :: NormRewrite inlineSmall _ e@(collectArgs -> (Var _ f,args)) = R $ do untranslatable <- isUntranslatable e if untranslatable then return e else do isInlined <- liftR $ alreadyInlined f limit <- liftR $ Lens.use inlineLimit if (Maybe.fromMaybe 0 isInlined) > limit then do cf <- liftR $ Lens.use curFun lvl <- Lens.view dbgLevel traceIf (lvl > DebugNone) ($(curLoc) ++ "InlineSmall: " ++ show f ++ " already inlined " ++ show limit ++ " times in:" ++ show cf) (return e) else do bodyMaybe <- HashMap.lookup f <$> Lens.use bindings case bodyMaybe of (Just (_,body)) | termSize body < 5 -> changed (mkApps body args) _ -> return e inlineSmall _ e = return e -- | Specialise functions on arguments which are constant constantSpec :: NormRewrite constantSpec ctx e@(App e1 e2) | (Var _ _, args) <- collectArgs e1 , (_, []) <- Either.partitionEithers args , null $ termFreeTyVars e2 , isConstant e2 = specializeNorm False ctx e constantSpec _ e = return e -- Experimental -- | Propagate arguments of application inwards; except for 'Lam' where the -- argument becomes let-bound. appProp :: NormRewrite appProp _ (App (Lam b) arg) = R $ do (v,e) <- unbind b if isConstant arg || isVar arg then changed $ substTm (varName v) arg e else changed . Letrec $ bind (rec [(v,embed arg)]) e appProp _ (App (Letrec b) arg) = R $ do (v,e) <- unbind b changed . Letrec $ bind v (App e arg) appProp _ (App (Case scrut ty alts) arg) = R $ do tcm <- Lens.use tcCache argTy <- termType tcm arg let ty' = applyFunTy tcm ty argTy if isConstant arg || isVar arg then do alts' <- mapM ( return . uncurry bind . second (`App` arg) <=< unbind ) alts changed $ Case scrut ty' alts' else do (boundArg,argVar) <- mkTmBinderFor tcm "caseApp" arg alts' <- mapM ( return . uncurry bind . second (`App` argVar) <=< unbind ) alts changed . Letrec $ bind (rec [(boundArg,embed arg)]) (Case scrut ty' alts') appProp _ (TyApp (TyLam b) t) = R $ do (tv,e) <- unbind b changed $ substTyInTm (varName tv) t e appProp _ (TyApp (Letrec b) t) = R $ do (v,e) <- unbind b changed . Letrec $ bind v (TyApp e t) appProp _ (TyApp (Case scrut altsTy alts) ty) = R $ do alts' <- mapM ( return . uncurry bind . second (`TyApp` ty) <=< unbind ) alts tcm <- Lens.use tcCache ty' <- applyTy tcm altsTy ty changed $ Case scrut ty' alts' appProp _ e = return e type NormRewriteW = Transform (WriterT [LetBinding] (R NormalizeMonad)) liftNormR :: RewriteMonad NormalizeMonad a -> WriterT [LetBinding] (R NormalizeMonad) a liftNormR = lift . R -- NOTE [unsafeUnbind]: Use unsafeUnbind (which doesn't freshen pattern -- variables). Reason: previously collected expression still reference -- the 'old' variable names created by the traversal! -- | Turn an expression into a modified ANF-form. As opposed to standard ANF, -- constants do not become let-bound. makeANF :: NormRewrite makeANF ctx (Lam b) = do -- See NOTE [unsafeUnbind] let (bndr,e) = unsafeUnbind b e' <- makeANF (LamBody bndr:ctx) e return $ Lam (bind bndr e') makeANF _ (TyLam b) = return (TyLam b) makeANF ctx e = R $ do (e',bndrs) <- runR $ runWriterT $ bottomupR collectANF ctx e case bndrs of [] -> return e _ -> changed . Letrec $ bind (rec bndrs) e' collectANF :: NormRewriteW collectANF _ e@(App appf arg) | (conVarPrim, _) <- collectArgs e , isCon conVarPrim || isPrim conVarPrim || isVar conVarPrim = do untranslatable <- liftNormR $ isUntranslatable arg localVar <- liftNormR $ isLocalVar arg case (untranslatable,localVar || isConstant arg,arg) of (False,False,_) -> do tcm <- Lens.use tcCache (argId,argVar) <- liftNormR $ mkTmBinderFor tcm "repANF" arg tell [(argId,embed arg)] return (App appf argVar) (True,False,Letrec b) -> do (binds,body) <- unbind b tell (unrec binds) return (App appf body) _ -> return e collectANF _ (Letrec b) = do -- See NOTE [unsafeUnbind] let (binds,body) = unsafeUnbind b tell (unrec binds) untranslatable <- liftNormR $ isUntranslatable body localVar <- liftNormR $ isLocalVar body if localVar || untranslatable then return body else do tcm <- Lens.use tcCache (argId,argVar) <- liftNormR $ mkTmBinderFor tcm "bodyVar" body tell [(argId,embed body)] return argVar -- TODO: The code below special-cases ANF for the ':-' constructor for the -- 'Signal' type. The 'Signal' type is essentially treated as a "transparent" -- type by the CLaSH compiler, so observing its constructor leads to all kinds -- of problems. In this case that "CLaSH.Rewrite.Util.mkSelectorCase" will -- try to project the LHS and RHS of the ':-' constructor, however, -- 'mkSelectorCase' uses 'coreView' to find the "real" data-constructor. -- 'coreView' however looks through the 'Signal' type, and hence 'mkSelector' -- finds the data constructors for the element type of Signal. This resulted in -- error #24 (https://github.com/christiaanb/clash2/issues/24), where we -- try to get the first field out of the 'Vec's 'Nil' constructor. -- -- Ultimately we should stop treating Signal as a "transparent" type and deal -- handling of the Signal type, and the involved co-recursive functions, -- properly. At the moment, CLaSH cannot deal with this recursive type and the -- recursive functions involved, hence the need for special-casing code. After -- everything is done properly, we should remove the two lines below. collectANF _ e@(Case _ _ [unsafeUnbind -> (DataPat dc _,_)]) | name2String (dcName $ unembed dc) == "CLaSH.Signal.Types.:-" = return e collectANF ctx (Case subj ty alts) = do localVar <- liftNormR $ isLocalVar subj (bndr,subj') <- if localVar || isConstant subj then return ([],subj) else do tcm <- Lens.use tcCache (argId,argVar) <- liftNormR $ mkTmBinderFor tcm "subjLet" subj return ([(argId,embed subj)],argVar) (binds,alts') <- fmap (first concat . unzip) $ liftNormR $ mapM (doAlt subj') alts tell (bndr ++ binds) return (Case subj' ty alts') where doAlt :: Term -> Bind Pat Term -> RewriteMonad NormalizeMonad ([LetBinding],Bind Pat Term) -- See NOTE [unsafeUnbind] doAlt subj' = fmap (second (uncurry bind)) . doAlt' subj' . unsafeUnbind doAlt' :: Term -> (Pat,Term) -> RewriteMonad NormalizeMonad ([LetBinding],(Pat,Term)) doAlt' subj' alt@(DataPat dc pxs@(unrebind -> ([],xs)),altExpr) = do lv <- isLocalVar altExpr patSels <- Monad.zipWithM (doPatBndr subj' (unembed dc)) xs [0..] let usesXs (Var _ n) = any ((== n) . varName) xs usesXs _ = False if (lv && not (usesXs altExpr)) || isConstant altExpr then return (patSels,alt) else do tcm <- Lens.use tcCache (altId,altVar) <- mkTmBinderFor tcm "altLet" altExpr return ((altId,embed altExpr):patSels,(DataPat dc pxs,altVar)) doAlt' _ alt@(DataPat _ _, _) = return ([],alt) doAlt' _ alt@(pat,altExpr) = do lv <- isLocalVar altExpr if lv || isConstant altExpr then return ([],alt) else do tcm <- Lens.use tcCache (altId,altVar) <- mkTmBinderFor tcm "altLet" altExpr return ([(altId,embed altExpr)],(pat,altVar)) doPatBndr :: Term -> DataCon -> Id -> Int -> RewriteMonad NormalizeMonad LetBinding doPatBndr subj' dc pId i = do tcm <- Lens.use tcCache patExpr <- mkSelectorCase ($(curLoc) ++ "doPatBndr") tcm ctx subj' (dcTag dc) i return (pId,embed patExpr) collectANF _ e = return e -- | Eta-expand top-level lambda's (DON'T use in a traversal!) etaExpansionTL :: NormRewrite etaExpansionTL ctx (Lam b) = do (bndr,e) <- unbind b e' <- etaExpansionTL (LamBody bndr:ctx) e return $ Lam (bind bndr e') etaExpansionTL ctx e = R $ do tcm <- Lens.use tcCache isF <- isFun tcm e if isF then do argTy <- ( return . fst . Maybe.fromMaybe (error "etaExpansion splitFunTy") . splitFunTy tcm <=< termType tcm ) e (newIdB,newIdV) <- mkInternalVar "eta" argTy e' <- runR $ etaExpansionTL (LamBody newIdB:ctx) (App e newIdV) changed . Lam $ bind newIdB e' else return e -- | Turn a normalized recursive function, where the recursive calls only pass -- along the unchanged original arguments, into let-recursive function. This -- means that all recursive calls are replaced by the same variable reference as -- found in the body of the top-level let-expression. recToLetRec :: NormRewrite recToLetRec [] e = R $ do fn <- liftR $ Lens.use curFun bodyM <- fmap (HashMap.lookup fn) $ Lens.use bindings tcm <- Lens.use tcCache normalizedE <- splitNormalized tcm e case (normalizedE,bodyM) of (Right (args,bndrs,res), Just (bodyTy,_)) -> do let appF = mkTmApps (Var bodyTy fn) (map idToVar args) (toInline,others) = List.partition ((==) appF . unembed . snd) bndrs resV = idToVar res case (toInline,others) of (_:_,_:_) -> do let substsInline = map (\(id_,_) -> (varName id_,resV)) toInline others' = map (second (embed . substTms substsInline . unembed)) others changed $ mkLams (Letrec $ bind (rec others') resV) args _ -> return e _ -> return e recToLetRec _ e = return e -- | Inline a function with functional arguments inlineHO :: NormRewrite inlineHO _ e@(App _ _) | (Var _ f, args) <- collectArgs e = R $ do tcm <- Lens.use tcCache hasPolyFunArgs <- or <$> mapM (either (isPolyFun tcm) (const (return False))) args if hasPolyFunArgs then do isInlined <- liftR $ alreadyInlined f limit <- liftR $ Lens.use inlineLimit if (Maybe.fromMaybe 0 isInlined) > limit then do cf <- liftR $ Lens.use curFun lvl <- Lens.view dbgLevel traceIf (lvl > DebugNone) ($(curLoc) ++ "InlineHO: " ++ show f ++ " already inlined " ++ show limit ++ " times in:" ++ show cf) (return e) else do bodyMaybe <- fmap (HashMap.lookup f) $ Lens.use bindings case bodyMaybe of Just (_, body) -> do liftR $ addNewInline f changed $ mkApps body args _ -> return e else return e inlineHO _ e = return e -- | Simplified CSE, only works on let-bindings, works from top to bottom simpleCSE :: NormRewrite simpleCSE _ e@(Letrec b) = R $ do (binders,body) <- first unrec <$> unbind b let (reducedBindings,body') = reduceBinders [] body binders if length binders /= length reducedBindings then changed (Letrec (bind (rec reducedBindings) body')) else return e simpleCSE _ e = return e reduceBinders :: [LetBinding] -> Term -> [LetBinding] -> ([LetBinding],Term) reduceBinders processed body [] = (processed,body) reduceBinders processed body ((id_,expr):binders) = case List.find ((== expr) . snd) processed of Just (id2,_) -> let var = Var (unembed (varType id2)) (varName id2) idName = varName id_ processed' = map (second (Embed . (substTm idName var) . unembed)) processed binders' = map (second (Embed . (substTm idName var) . unembed)) binders body' = substTm idName var body in reduceBinders processed' body' binders' Nothing -> reduceBinders ((id_,expr):processed) body binders